

COUNTRYSIDE · CONNECTED · CREATIVE

DOCUMENTS SUBMITTED IN SUPPORT

OP5 APPENDIX 16.4 - TRANSPORT ASSESSMENT

www.otterpoolpark.org March 2022

APPLICATION CONTENTS

OP5 Appendix 2.6

OP5 Appendix 2.7

OP5 Appendix 4.4

OP5 Appendix 4.5

Commitments Register

Illustrative plans

Infrastructure Assessment

(regarding the permitted waste facility)

Illustrative accommodation schedule

Application	Admini:	<u>stration</u>	OP5 Appen	dix 4.6	Indicative phasing plan
OP1	Coveri	ng Letter	OP5 Appen	dix 4.8	Utilities Strategy
OP2	Plannir	ng Fee	OP5 Appen	dix 4.9	Energy Strategy
OP3 Outline Planning Application Form,			OP5 Appen	dix 4.10	Community Development and Facilities Strategy
	moradi	ng roic varie continuation a city cirrii	OP5 Appen	dix 4.11	Green Infrastructure Strategy
Environmer	ntal State	<u>ement</u>	OP5 Appen	dix 4.12	Heritage Strategy
OP4	Non-te	echnical Summary	OP5 Appen	dix 4.13	Governance and Stewardship Strategy
OP5	Enviror	nmental Statement which assesses the tof the proposed development on the	OP5 Appen	dix 4.14	Housing Strategy (including affordable housing strategy)
Chapter 1		ng topics:	OP5 Appen	dix 4.15	Overarching Delivery Management Strategy
Chapter 2		proach and Methodology	OP5 Appen	dix 4.16	Design and Access Statement
Chapter 3		pment and Consideration of Alternatives	OP5 Appen	dix 9.25	Conservation Management Plan
Chapter 4		e and Proposed Development	OP5 Appen	dix 9.26	Schedule Monument Consent Decision
Chapter 5		ture and Soils	OP5 Appen	dix 11.1	Health Impact Assessment
Chapter 6	Air Quo	ality	OP5 Appen	dix 11.2	Retail Impact Assessment
Chapter 7	Ŭ	y and Biodiversity	OP5 Appen	dix 12.5	Kentish Vernacular Study and Colour Studies
Chapter 8		e Change	OP5 Appen	dix 14.1	Economic Strategy
Chapter 9		al Heritage	OP5 Appen	dix 15.1	Flood Risk Assessment and Surface Water
Chapter 10	_	gy, Hydrology and Land Quality	ODE 4:	-15-15-0	Drainage Strategy
Chapter 11		h Health	OP5 Appen		Water Cycle Study
	Chapter 12 Landscape and Visual Impact		OP5 Appen		Transport Assessment
Chapter 13		and Vibration	OP5 Appen		Transport Strategy
Chapter 15		conomic effects and community	OP5 Appen		Framework Travel Plan
Chapter 16		e water resources and flood risk	OP5 Appen		Minerals Assessment
Chapter 16 Chapter 17	Transp	and resource management	OP5 Appen	UIX 17.3	Outline site waste management plan
		ents page which provides	OP6	Cuido	to the Diagning Application
a full list of ES					to the Planning Application
			OP7	•	l Vision
<u>Documents submitted for approval</u>		OP8	Plannii	ng and Delivery Statement	
OP5 Append	dix 4.1	Development Specification	OP9		nability Statement
OP5 Append		Site Boundary and Parameter Plans	OP10	Monito	ring and Evaluation Framework document
OP5 Append	dix 2.8	Alternative Parameter Plans (with permitted waste facility in situ)	OP11		y Vision Report
OP5 Append	dix 4.3	Strategic Design Principles	OP12		entric travel document
		OP13	Access	s and Movement Mode Share Targets	
Documents submitted in support			OP14	Culture	al and Creative Strategy

OP15

OP16

Statement of Community Involvement

Involvement

Supplemental Statement of Community

OTTERPOOL PARK

Transport Assessment

CONTENTS

EXE	ECUTIVE SUMMARY	1
<mark>1</mark> 1.1	INTRODUCTION Overview	
1.2	Site Location and Existing Land Uses	7
1.3	Transport Assessment Scope	8
1.4	Transport Assessment Approach	12
1.5	Contents of Transport Assessment	13
<mark>2</mark> 2.1	TRANSPORT POLICY AND GUIDANCE Background	
2.2	Summary	17
<mark>3</mark> 3.1	BASELINE CONDITIONS FOR SUSTAINABLE MODES	
3.2	Walking and Cycling	18
3.3	Public Transport Network and Services	31
3.4	Summary	32
<mark>4</mark> 4.1	BASELINE LOCAL HIGHWAY CONDITIONS	
4.2	Key Links within the Study Area	33
4.3	Baseline Traffic Flows	39
4.4	Baseline Highway Capacity	40
4.5	M20 Freight Traffic Management	42
4.6	Road Safety	43
4.7	Westenhanger Station Vehicle Parking	49
<mark>5</mark> 5.1	PROPOSED DEVELOPMENT	
5.2	Development Quantum	51
5.3	Otterpool Park Transport Strategy	53
5.4	Enabling Infrastructure	57
<mark>6</mark> 6.1	FUTURE BASELINE HIGHWAY CONDITIONS	
6.2	Background Traffic Forecasting	62
6.3	Committed Highway Schemes	74
6.4	Folkestone and Hythe District Council Core Strategy	76

<mark>7</mark> 7.1	DEVELOPMENT TRIP GENERATION – WORST CASE ASSUMPTIONS Introduction	
7.2	Overview of Methodology	77
7.3	Trip Generation by Land Use	80
7.4	Construction Vehicles Trip Generation	83
7.5	Trip Generation Summary	
<mark>8</mark> 8.1	DEVELOPMENT TRIPS BY MODE – WORST CASE ASSUMPTIONS	
8.2	Overview of Methodology	84
8.3	Internal and External Trip Mode Splits by Trip Purpose	85
8.4	Allocation of Mode Splits	86
8.5	Total Internal and External Trips by Mode	87
8.6	Permitted Waste Facility Scenario	87
<mark>9</mark> 9.1	DEVELOPMENT TRIP DISTRIBUTION	
9.2	Vehicle Trip Distribution	94
9.3	Trip Distribution of Non-Car Modes	100
<mark>10</mark> 10.1	JUNCTION CAPACITY ASSESSMENTS	
10.2	Do-Minimum and Do-Something Traffic Flows	105
10.3	Overview of Junction Capacity Assessment Results	109
10.4	Highway Mitigation	163
10.5	Mitigation Summary	168
10.6	Sensitivity Test (Quantum for Approval)	170
<mark>11</mark> 11.1	MERGE, DIVERGE AND WEAVING ASSESSMENTS	
11.2	Study Area	174
11.3	Vehicle Trips and Assessment Scenarios	175
11.4	Merge / Diverge Result Consistency Analysis	175
11.5	M20 J12 /13 Weaving Assessment	177
<mark>12</mark> 12.1	USER CENTRIC APPROACH	
12.2	User Centric Scenarios	179
<mark>13</mark> 13.1	EFFECTS ON SUSTAINABLE TRANSPORT MODES	

13.2	Effects on Pedestrian Network	189
13.3	Effects on Cycle Network	
13.4	Effects on Bus Network	
13.5	Effects on Rail Network	197
14	CONCLUSIONS	199
APP	ENDIX A ORIGINAL 2019 TA SCOPING NOTE	201
APP	ENDIX B POLICY REVIEW NOTE	202
APP	ENDIX C CANTERBURY MODEL VALIDATION REPORT	203
APP	ENDIX D SURVEY DATA ANALYSIS REPORT (FHDC ASHFORD)	204
APP	ENDIX E 2018 BASELINE FLOW DIAGRAMS	205
APP	ENDIX F BASELINE MODELLING OUTPUTS	206
APP	ENDIX G COLLISION ANALYSIS	207
APP	ENDIX H PARKING SURVEY RESULTS	208
APP	ENDIX I HIGHWAY ACCESS DRAWINGS	209
APP	ENDIX J NEWINGREEN JUNCTIONS TECHNICAL NOTE	210
APP	ENDIX K COMMITTED DEVELOPMENT TRAFFIC FLOWS	211
APP	ENDIX L HIGHWAYS ENGLAND RESPONSE TO OTTERPOOL PARK PLAI	NNING
APP	LICATION: BACKGROUND TRAFFIC GROWTH	212
APP	ENDIX M COMMITTED HIGHWAY SCHEMES	213
APP	ENDIX N TRIP GENERATION TECHNICAL NOTE	214
APP	ENDIX O MODE SPLIT TECHNICAL NOTE	215
APP	ENDIX P TRIP RATES BY MODE BY LAND USE TECHNICAL NOTE	216
APP	ENDIX Q TRIP DISTRIBUTION TECHNICAL NOTE (VEHICLES)	217
APP	ENDIX R MODELLING OUTPUT FILES	218
APP	ENDIX S MERGE/DIVERGE DIAGRAMS	219
APP	ENDIX T NON-CAR TRIP DISTRIBUTIONS	220
APP	ENDIX U ILLUSTRATIVE ACCOMMODATION SCHEDULE REFLECTIVE OF	THE
DEV	ELOPMENT SPECIFICATION QUANTUM	221

FIGURES

Figure 1 Regional Context Plan	8
Figure 2 Highway Capacity Study Area	10
Figure 3 Policy and Guidance Documents that influence Otterpool Park Transport Assessment	16
Figure 4 Local Walking and Cycling Network	20
Figure 5 Existing Public Transport Provision and Walk Isochrones	26
Figure 6 Existing Cycle Route Map and Isochrones	27
Figure 7 Existing Local Amenities and Walking Isochrone	30
Figure 8 Local Highway Network	38
Figure 9 Map of Operation Brock Traffic Management Sites (Source – Department for Transport and Highways England)	43
Figure 10 Total Collisions within Study Area	44
Figure 11 A20 Collisions by Year and by Road User	47
Figure 12 A20 Collisions by Year and by Severity	47
Figure 13 A20 Study Route Collisions	48
Figure 14 Integrated Transport Strategy	56
Figure 15 Walking and Cycling Strategy Map	58
Figure 16 Otterpool Traffic Distribution on the Wider Highway Network – AM Peak (2044 8.5k)	98
Figure 17 Otterpool Traffic Distribution on the Wider Highway Network – PM Peak (2044 8.5k)	99
Figure 18 Locations of Proposed Junctions within Masterplan	104
Figure 19 R.A.G. Diagram for 2037 Do-Minimum	110
Figure 20 R.A.G Diagram for 2037 Do-Something	111
Figure 21 R.A.G. Assessment for 2044 8,500 Homes Do-Minimum Scenario	112
Figure 22 R.A.G. Diagram for 2044 8,500 Homes Do-Something Scenario	113
Figure 23 R.A.G. Diagram for 2044 10,000 Homes Do-Minimum Scenario	114
Figure 24 R.A.G Diagram 2044 10,000 Homes Do-Something Scenario	115
Figure 25 M20 Junction 10	116
Figure 26 M20 Junction 11	118
Figure 27 A20 Ashford Road / Swan Lane	119
Figure 28 A20 Ashford Road / Stone Hill	120
Figure 29 A0 Hythe Road / Station Road / Church Road	121
Figure 30 A20 Hythe Road / Mersham	122
Figure 31 A2070 Kennington Road / The Street	123

Figure 32 A20 Hythe Road / The Street	
Figure 33 A20 Ashford Road / B2067 Otterpool Lane	
Figure 34 B2067 Otterpool Lane / Aldington Road	
Figure 35 Aldington Road / Stone Street	
Figure 36 A20 Ashford Road / Stone Street / Hythe Road	
Figure 37 Aldington Road / Lympne Hill	
Figure 38 A261 Hythe Road / Aldington Road	
Figure 39 A261 London Road / Barrack Hill	
Figure 40 A259 / Dymchurch Road / Military Road Gyratory	
Figure 41 A259 Prospect Road / A259 East Road / Station Road / High Street	
Figure 42 A20 Ashford Road / A20 Junction 11 LILO	
Figure 43 A20 Ashford Road / Sandling Road	
Figure 44 A20 Ashford Road / Bargrove	
Figure 45 M20 Junction 12 (Cheriton interchange)	
Figure 46 M20 Junction 13 (Castle Hill Interchange)	
Figure 47 M20 Junction 13	
Figure 48 M20 Junction 9	
Figure 49 B2064 Cheriton High Street / B2063 Risborough Lane	
Figure 50 B2064 Cheriton Road / A2034 Cherry Garden Avenue	
Figure 51 A259 Prospect Road / Stade Street	
Figure 52 Barrow Hill Shuttle Signals	
Figure 53 SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads	
Figure 54 SH19 Alkham Valley Road / A20 slip roads	
Figure 55 SH16 A260 Canterbury Road / Alkham Valley Road	
Figure 56 M20 Junction 10A	
Figure 57 A20 Ashford Road small roundabout	
Figure 58 Old Dover Road / St Lawrence Road / The Drive and Nackington Road / Old Dover Road 161	
Figure 59 Study Area for Merge, Diverge and Weaving Assessment	
Figure 60 DMRB Weaving Flow Terms	
Figure 61 User Centric Approach	
Figure 62 Derivation of Best Case and User Survey Mode Share Flow Diagram	

TABLES

Table 1 Existing Accessible Facilities and Services via Walking and Cycling	28
Table 2 Summary of Local Bus Services (One-way Frequency)	31
Table 3 Summary of Rail Services from Westenhanger Railway Station	32
Table 4 Summary of AM and PM Peak Hour 2018 Baseline Traffic Flows	39
Table 5 Summary of 2018 Baseline AM and PM Peak Hour Highway Capacity	41
Table 6 Total Collisions within Study Area by Year and Severity	43
Table 7 Total Collisions within Study Area by Year and Road User	45
Table 8 Total Collisions within Study Area by Severity and Road User	45
Table 9 Total Collisions within Study Area by Route	45
Table 10 Parking Beat Survey Results	50
Table 11 Otterpool Park Development Schedule (2037)	51
Table 12 Otterpool Park Development Schedule (2044 8.5k)	52
Table 13 Otterpool Park Development Schedule (2044 10k)	52
Table 14 A20 Ashford Road Base and Future Year Traffic Flows	60
Table 15 Forecast Household and Job Numbers for Ashford, Folkestone & Hythe and Canterbury by Ye	ar 66
Table 16 TEMPro All Purpose Growth factors (Origin/ Destination) for Ashford and Folkestone & Hythe.	68
Table 17 Forecast TEMPro Growth factors (Rural Motorway) for Ashford and Folkestone & Hythe	69
Table 18 Forecast TEMPro Growth factors (All Road Types) for Canterbury	69
Table 19 HGV Traffic Growth Factors applied to Base Year Model	70
Table 20 2037 Forecast Traffic Flows on Key Roads without Otterpool Park Development	71
Table 21 2044 Forecast Traffic Flows on Key Roads without Otterpool Park Development	72
Table 22 2044 10k Forecast Traffic Flows on Key Roads without Otterpool Park Development	73
Table 23 All-mode Trip Rates by Land Use	78
Table 24 Linked Trip Reductions applied to Incoming External Trips by Purpose	80
Table 25 Total All-Mode Trip Generation by Land Use (2037)	80
Table 26 Total All-Mode Trip Generation by Land Use (2044 8.5k)	81
Table 27 Total All-Mode Trip Generation by Land Use (2044 10k)	82
Table 28 Development Construction Vehicle Trips	83
Table 29 Summary of Trip Generation by Assessment Year	83
Table 30 Mode Splits by Trip Purpose for Internal Trips	85
Table 31 Mode Splits by Trip Purpose for External Trips	85
Table 32 Allocation of Mode Splits by Trip Purpose to Land Uses	86

Table 33 Internal, External and Combined Trips by Mode (2037)	88
Table 34 Internal, External and Combined Trips by Mode (2044 8.5k)	89
Table 35 Internal, External and Combined Trips by Mode (2044 10k)	90
Table 36 Internal, External and Combined AM and PM Peak Mode Splits (2037)	91
Table 37 Internal, External and Combined AM and PM Peak Mode Splits (2044 8.5k)	91
Table 38 Internal, External and Combined AM and PM Peak Mode Splits (2044 10k)	92
Table 39 Internal, External and Combined Trips by Mode (2044 – Permitted Waste Facility Scenario)	93
Table 40 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2037)	95
Table 41 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2044 8.5	•
Table 42 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2044 10k	k) 97
Table 44 Committed Highway Schemes	103
Table 45 Proposed New Access Junctions	105
Table 46 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2037)	
Table 47 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2044 8.5k Scenario)	
Table 48 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2044 10k Scenario)	
Table 48 J1: M20 Junction 10 capacity assessment	116
Table 49 J1: A292 Hythe Road/M20 Westbound On-slip junction capacity assessment	117
Table 50 J2: M20 Junction 11 capacity assessment	118
Table 51 J3: A20 Ashford Road / Swan Lane capacity assessment	119
Table 52 J4: A20 Ashford Road / Stone Hill capacity assessment	120
Table 53 J5: A20 Hythe Road / Station Road / Church Road capacity assessment	121
Table 54 J6: A20 Ashford Road / Mersham capacity assessment	122
Table 55 J7a: A2070 Kennington Road / The Street capacity assessment	123
Table 56 J7b: A20 Ashford Road / The Street capacity assessment	124
Table 57 J8: A20 Ashford Road / B2067 Otterpool Lane capacity assessment	125
Table 58 J9: B2067 Otterpool Lane / Aldington Road	126
Table 59 J10: Aldington Road / Stone Street capacity assessment	127
Table 60 J11: A20 Ashford Road / Stone Street / Hythe Road capacity assessment	128
Table 61 J12: A20 Aldington Road / Lympne Hill capacity assessment	129
Table 62 J13: A2610 Hythe Road / Aldington Road capacity assessment	130
Table 63 J14: A261 London Road / Barrack Hill capacity assessment	131

Table 64 J15: A259 / Dymchurch Road / Military Road Gyratory capacity assessment	132
Table 65 J16: A259 Prospect Road / A259 East Road / Station Road / High Street capacity assessment .	134
Table 66 J17: A20 Ashford Road / A20 Junction 11 LILO capacity assessment	135
Table 67 J18: A20 Ashford Road / Sandling Road capacity assessment	136
Table 68 J19: A20 Ashford Road / Bargrove capacity assessment	137
Table 69 J20: M20 Junction 12 (Cheriton interchange) capacity assessment	138
Table 70 J21a: M20 Junction 13 (Castle Hill interchange) capacity assessment	139
Table 71 J21b: M20 Junction 13 capacity assessment	140
Table 72 J23: M20 Junction 9 capacity assessment	141
Table 72 J23: M20 Junction 9 capacity assessment	141
Table 73 J24: B2064 Cheriton High Street / B2063 Risborough Lane capacity assessment	142
Table 74 J25: B2064 Cheriton Road / A2034 Cherry Garden Avenue capacity assessment	143
Table 75 J26: A259 Prospect Road / Stade Street capacity assessment	144
Table 76 J27: Barrow Hill Shuttle Signals capacity assessment	145
Table 77 SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads capacity assessment	146
Table 78 SH19 Alkham Valley Road / A20 slip roads capacity assessment	147
Table 79 SH16 A260 Canterbury Road / Alkham Valley Road capacity assessment	149
Table 80 J31: A20 Ashford Road access to P1B & P7 capacity assessment	151
Table 81 J32: A20 Ashford Road access to P6 capacity assessment	152
Table 82 J33: A20 Ashford Road Link Road west capacity assessment	153
Table 83 J34 A20 Ashford Road access to P1A & P2A capacity assessment	154
Table 84 J35:A20 Ashford Road Link Road east capacity assessment	155
Table 85 J36: A20 Ashford Road Link Road / High Street capacity assessment	156
Table 86 J38: Otterpool Lane Access to Zone P2B & P3B capacity assessment	157
Table 87 J39: Internal link road capacity assessment	158
Table 88 J42: M20 Junction 10A capacity assessment	159
Table 89 J43: A20 Ashford Road small roundabout capacity assessment	160
Table 90 J44: Old Dover Road / St Lawrence Road / The Drive capacity assessment	161
Table 91 J44: Nackington Road / Old Dover Road capacity assessment	162
Table 93 M20 Junction 11 AM Peak	163
Table 94 M20 Junction 11 PM Peak	164
Table 95 2044 8.5k Do-Something Results for Junction 11 Newingreen Junction	164
Table 96 M20 Junction 9 AM Peak	166

Table 97 M20 Junction 9 PM Peak	166
Table 98 M20 Junction 10A AM Peak	167
Table 99 M20 Junction 10A PM Peak	168
Table 100 Summary of Highway Mitigation	169
Table 101 Sensitivity Test Compared to 2044 8.5k homes scenario – Vehicle and Percentage Change	171
Table 102 - J11 - Newingreen Junction Sensitivity Test Modelling Results	172
Table 103 - J33 - A20 Ashford Link Road West Sensitivity Test Modelling Results	172
Table 104 - J34 - A20 Ashford Road access to P1A & P2A Sensitivity Test Modelling Results	172
Table 105 - J35 - A20 Ashford Road Link Road East Sensitivity Test Modelling Results	173
Table 106 - J36 - Ashford Road Link Road / High Street Sensitivity Test Modelling Results	173
Table 107 - J39 - Internal Link Road / High Street Sensitivity Test Modelling Results	173
Table 108 Summary of Merge and Diverge Assessment Upgrade Requirements	175
Table 109 Summary of Merge and Diverge Upgrade Requirements for Otterpool PA 8500 homes	177
Table 110 2044 DS 8.5k Scenario Number of Lanes Calculation - URBAN	178
Table 111 2044 DS 10k Scenario Number of Lanes Calculation - URBAN	178
Table 112 Opportunities that Key Future Mobility changes would bring	179
Table 113 Internal, External and Combined AM and PM Peak Mode Splits (2044) – Best Case Scenario .	183
Table 114 Internal, External and Combined AM and PM Peak Mode Splits (2044) – User Survey Scenario	
Table 115 Internal, External and Combined Trips by Mode (2044) – Best Case Scenario	
Table 116 Internal, External and Combined Trips by Mode (2044) – User Survey Scenario	
Table 117 2 Way Driver Trips Summary by Scenario (2044)	
Table 118 Origin/Destination Proportions of Non-Car Mode (2044 8.5k)	
Table 119 AM and PM Peak External Walk Trips by Purpose – Best Case Scenario (2044 8.5k)	
Table 120 AM and PM Peak External Walk Trips by Purpose – User Survey Scenario (2044 8.5k)	189
Table 121 AM and PM Peak External Walk Trips by Local Routing – Best Case Scenario (2044 8.5k)	190
Table 122 AM and PM Peak External Walk Trips by Local Routing – User Survey Scenario (2044 8.5k)	190
Table 123 AM and PM Peak External Cycle Trips by Purpose – Best Case Scenario (2044 8.5k)	193
Table 124 AM and PM Peak External Cycle Trips by Purpose – User Survey Scenario (2044 8.5k)	193
Table 125 AM and PM Peak External Cycle Trips by Local Routing – Best Case Scenario (2044 8.5k)	193
Table 126 AM and PM Peak External Cycle Trips by Local Routing – User Survey Scenario (2044 8.5k)	194
Table 125 AM and PM Peak External Cycle Trips by Local Routing – Best Case Scenario (2044 8.5k) Table 126 AM and PM Peak External Cycle Trips by Local Routing – User Survey Scenario (2044 8.5k) Table 127 AM and PM Peak External Bus Trips by Service Number – Best Case scenario (2044 8.5k) Table 128 AM and PM Peak External Bus Trips by Service Number – User Survey scenario (2044 8.5k).	194 196

Table 130 AM and PM Peak External Rail Trips by Route Direction – User Survey Scenario (2044 8.5k).. 197

Executive Summary

- ES1. This Transport Assessment (TA) has been prepared in support of an amended outline planning application seeking permission for the redevelopment of the Otterpool Park site through the demolition of identified existing buildings and erection of a residential led mixed use development comprising up to 8,500 residential homes including market and affordable homes; age restricted homes, assisted living homes, extra care facilities, care homes, sheltered housing and care villages; a range of community uses including primary and secondary schools, health centres and nursery facilities; retail and related uses; leisure facilities; business and commercial uses; open space and public realm; sustainable urban drainage systems; utility and energy facilities and infrastructure; waste water infrastructure and management facilities; vehicular bridge links; undercroft, surface and multi-storey car parking; creation of new vehicular and pedestrian accesses into the site, and creation of a new vehicular, pedestrian and cycle network within the site; improvements to the existing highway and local road network; lighting; engineering works, infrastructure and associated facilities; together with interim works or temporary structures required by the development and other associated works including temporary meanwhile uses. Layout, scale, appearance, landscaping and means of access are reserved for approval.
- ES2. In addition to the outline application development, a wider Otterpool Park Framework Masterplan Area (OPFM) includes for up to 10,000 homes has been considered as a sensitivity assessment scenario.

- ES3. Otterpool Park is located in the Folkestone & Hythe district. The villages of Westenhanger and Newingreen lie within the application site boundary, while the villages of Lympne, Barrow Hill and Sellindge are located just outside it. Link Park, a distribution and industrial centre, lies just outside the application boundary and within the boundary of the OPFM. The Kent Downs Area of Outstanding Natural Beauty (AONB) bounds the area along its eastern and southern edges.
- ES4. In February 2019, the original outline planning application was submitted for the Otterpool Park development supported by a TA. The scope of assessment required for the application was discussed with Kent County Council (KCC), Folkestone & Hythe District Council (FHDC) and Highways England (HE), (now National Highways (NH)), during discussions between July 2017 and July 2018 for the 2019 TA. Following the submission, further comments were raised, by KCC, FHDC and HE. These have been discussed and addressed where appropriate.
- ES5. The originally agreed approach for the TA is the traditional approach reflective of the 'predict and provide' methodology derived from historic trip rate patterns. This approach is based on various sources of data including 2011 Census, TRICS surveys and the National Travel Survey. As the data is up to 10 years old and does not consider any step changes to the derived mode shares of the latest travel patterns and sustainable travel choices to be promoted by the development, the trips generated via this methodology are considered a worst case for car trips. The highway capacity assessment has therefore been undertaken based on this approach to demonstrate that even in such a scenario, there will be highway mitigation options.
- ES6. However, this is not the desired approach and although key highway mitigation options have been identified to accommodate the worst-case car trips, the car trips generated by the site are not expected to reach the levels forecast, due to the proposed sustainable infrastructure to be implemented as part of the development. The Otterpool Park development and associated transport strategies will provide residents, employees and visitors with an attractive and comprehensive network of sustainable travel options that will be a feasible alternative to the use of the private car and promote active travel modes.
- ES7. A Transport Strategy (ES Appendix 16.5) has been introduced to provide more progressive mobility interventions for Otterpool Park. The future of travel and the movement of goods is changing. Advances to technology, changes to the way we work and a shift in the way we access services and buy goods are influencing the way we travel. The vision is to promote sustainable and active travel modes through the offer at Otterpool Park such that the need for long distance travel and reliance on the private vehicle is reduced. This is consistent with the Folkestone and Hythe District Council's aim to achieve the net-zero emissions target by 2030 and the Government's Ten Point Plan for a Green Industrial Revolution, of which Point Five is Green public transport, cycling and walking.
- ES8. The Transport Strategy for Otterpool Park is founded on the following principles:
 - · Create walkable neighbourhoods and a high street highly accessible by walking and cycling
 - Provide strong walking, cycling and bus connections to rail station, employment, high street, local centres and schools from residential areas
 - Provide wider connectivity by walking, cycling and bridleways into surrounding countryside and existing communities
 - Ensure a high level of connectivity to and from Otterpool Park within the sub-region by frequent high-quality public transport
 - Minimise and manage the impacts of traffic on existing road network particularly through existing communities and other sensitive areas
 - Provide appropriate levels of parking for cars and bicycles
 - Implement a range of sustainable travel behavioral measures to encourage use of sustainable modes

- Provide for future needs for electric vehicles and flexibility to adapt to innovative future mobility solutions
- Reduce the need to travel by providing relevant on-site facilities.
- ES9. An alternative method to estimating the future trip generation has therefore been undertaken, the User Centric approach, and puts the mobility needs of the users first. This method takes into account the propensity of users to take up more active and sustainable travel options compared to the private car should there be a reasonable alternative. This has been determined by carrying out an online survey of 2,600 respondents in London and Kent who meet the demographic characteristics of future residents of Otterpool Park and asking questions relating to their travel behaviours. The consideration for travel behaviours prior to the Covid-19 pandemic, but also recognising the 'new normal' of travel behaviour in the future, was made clear to the respondents for each question. Based on the results of these surveys two scenarios for an ambitious mode share have been derived, on which the sustainable modes have been assessed. These scenarios are:
 - Best Case Scenario: This scenario takes the user survey results a step further by applying a more
 ambitious mode share target. The comprehensive range of transport measures proposed at the
 development would be required to support the ambitious mode share target. This target is intended
 for the north east area of the development, where accessibility levels are expected to be highest
 with Westenhanger rail station being within this plot, however, it could also be used as an aspiration
 for the wider site. The mode share for this scenario has originated from WSP's "Otterpool Park –
 Phase 1 Access and Movement Strategy" with some minor amendments.
 - User Survey Scenario: Directly based on the likely travel behaviour of future Otterpool Park users based on survey responses and are only applied to the external trip Mode Share, the internal trips reflect those in the best-case scenario.

Sustainable Modes

ES10. The existing situation for sustainable modes and the proposed mitigation are summarised in the following table.

Existing Situation	Mitigation
The only signal-controlled crossing is located on Otterpool Lane at the junction with the A20 Ashford Road. No infrastructure is provided for cyclists and road alignments on the A20 and the A261 Hythe Road create difficult environments for cyclists on these heavily-trafficked roads.	Provision of a number of new junctions along the A20 Ashford Road and B2067 Otterpool Lane. Proposed junctions are shown in Error! Reference source not found. as part of the Highway Capacity Study Area.
PRoW within the study area are of mixed condition. Overall, there are existing issues with north-south permeability and lack of wider connections and links over the railway line and M20.	 Improvements to the following walking and cycling routes as part of an ongoing dialogue with KCC, to be secured and detailed with the supporting Section 106 legal agreement following planning submission. HE/359 and HE371footpath - Improve the connection to Public Right of Way (PROW) and cycle network from Westenhanger Station to the north HE/281 footpath - Improvements to the route between Stone Street and heading south east through Sandling Park towards Hythe and Saltwood. HE/293 footpath - links to the proposed pedestrian network and connects eastwards to Hythe.

Existing Situation	Mitigation
	 HE/343 byway – Improving this link will make it more attractive as a pedestrian route to Hythe. Aldington Road between Otterpool Lane and Stone Street – improvements to the pedestrian provision such as formalised crossing points and consideration for traffic calming measures close to key pedestrian desire lines. Harringe Lane - proposal to close this road for vehicle traffic halfway down the road. This will prevent any through traffic generated by the development and create a more attractive route for walking and cycling in the north – south direction
The accessibility of the site to bus services is limited, with bus stop locations limited to the locations of the existing settlements at Barrow Hill, Newingreen, Link Park and Lympne. The majority of the site is more than the desirable distance of 400m from a bus stop. Service frequency is low with only two hourly services operating on a weekday.	The Otterpool Park Transport Strategy proposes an overall bus service frequency enhancement (including all services) to 4 to 6 buses per hour, which is expected to be sufficient to meet the demand estimated using the User Centric Approach. The proposed level of provision would provide greater capacity that the expected increase in demand.
Westenhanger railway station offers a sustainable gateway to the site from within Kent and offers the opportunity to connect to high speed services at Ashford International or Folkestone.	The effect on rail patronage that the proposed development and the Transport Strategy would have been difficult to quantify. Further detailed assessment work is required and changes to rail patronage would be monitored over time as the development phases are built out. The Core Strategy Review (2020, with 2021 Main Modifications) references upgrades to Westenhanger Station being necessary to provide the capacity to enable a high speed service ready and integrated transport hub. This will be in partnership with Network Rail, the rail operator and KCC.

Highway Capacity Assessment

- ES11. The highway capacity study undertaken includes local modelling of a number of agreed existing and committed junctions as well as proposed junctions that connect into the existing highway network. Junctions have been assessed using the appropriate LinSig, Arcady or Picady software. A VISSIM model has also been produced at the request of KCC, and the base model has been shared and discussed with HE. Merge/diverge assessments have been undertaken within the study area on the M20 and at the A20 slip roads near Alkham Valley.
- ES12. The following forecast years have been assessed for the highway capacity study:
 - 2018 Base Year: pre-construction 'no scheme' baseline
 - 2037: the end of the Folkestone & Hythe District Council Local Plan period
 - 2044 Main Assessment (2044 8.5k): the forecast year of full build-out for the 8,500 homes and associated land uses. The Otterpool Masterplan assumes the completion of 8,500 homes in 2042, however, assessing the year 2044 provides a worst-case assessment in terms of transport assessment for vehicles with the inclusion of two additional years of traffic growth. This represents the main assessment for the Outline Planning Application
 - 2044 Sensitivity Assessment (2044 10k): representing the year of full build-out for OPFM, including 10,000 homes.

- 2044 Quantum for Approval (2044 8.5k) Sensitivity Test: There is a necessity within the transport assessment main assessment to use the Illustrative Accommodation Schedule and Illustrative Masterplan due to the requirement to identify the trip origin and destinations. The quantum of development set out within the Illustrative Accommodation Schedule is lower than that for which approval is requested within the Development. This test compares the vehicle trips generated by this uplifted quantum to the 2044 Main Assessment (2044 8.5k) and the 2044 Sensitivity Assessment (2044 10k).
- ES13. Each future year assessment includes two scenarios:
 - 1) Do-Minimum (DM), which includes:
 - · committed highway improvement schemes; and
 - forecast baseline traffic flows.
 - 2) Do-Something (DS), which includes:
 - · committed highway improvement schemes;
 - highway schemes proposed for the Otterpool Park Development;
 - forecast baseline traffic flows; and
 - · Otterpool Park development traffic flows.
- ES14. A weekday morning peak hour (0800 to 0900) and a weekday evening peak hour (1700 to 1800) have been assessed for each assessment year. These time periods align with the local highway network peak periods as determined from analysis of traffic survey data.
- ES15. A Monitor and Manage Framework is proposed as part of the Core Strategy to provide mitigation for the Strategic Road Network. There is a strong emphasis on this approach in the bringing forward of the Otterpool Park development. Given the worst-case nature of the trip generation exercise, it is inappropriate to bring forward infrastructure which provides excessive capacity and encourages additional private vehicle trips on the network.
- ES16. The capacity assessments identified that the following junctions would operate within capacity in the DM scenarios, but over capacity in one or more DS scenarios:
 - M20 Junction 11;
 - A20 Ashford Road Left-In Left-Out;
 - A261 London Road / Barrack Hill;
 - Aldington Road / Lympne Hill;
 - A20 Hythe Road / The Street; and
 - A20 Ashford Road small roundabout.
- ES17. Given the considerable uncertainty surrounding the worst-case trip generation and the promotion of a user centric approach, as well as a move away from 'predict and provide' style mitigation, it is not appropriate to consider capacity improvements for all these junctions. Where suitable, mitigation measures have been identified at specific junctions, however the monitor and manage approach to establish whether conditions warrant mitigation is being promoted as the most suitable approach to promote sustainability and the use of non-car modes. The highway mitigation summary is presented in the following table:

Location	Mitigation
A20 between M20 Junction 11 and its junction with Stone Street and A261 Hythe Road	Enhancement of the /upgrade of existing single lane carriageway, including two signalised junctions with pedestrian crossing facilities.
A20 Junction with Stone Street and A261 Hythe Road (Newingreen Junction)	New Signalised junction
M20 Junction 11 roundabout	Partial signalisation
M20 Junction 11, 12 and 13	Monitor and Manage Approach to consider the need for mitigation
A20 Ashford Road Left-In Left-Out junction	
A261 London Road / Barrack Hill junction	
Aldington Road / Lympne Hill junction	
A20 Hythe Road / The Street junction	
A20 Ashford Road small roundabout junction	

- ES18. Discussions regarding suitable mitigation and any potential trigger points is ongoing with FHDC, NH and KCC.
- ES19. The proposals for Otterpool Park represent a new garden settlement based on sustainable living and sustainable travel and would accord with the requirements of local, regional and national policy requirements and guidance.
- ES20. Current conditions on parts of the existing walking and cycling networks would be insufficient to accommodate significant future growth. Service frequency on the local bus network as well as accessibility to bus and rail services is poor. Several parts of the highway network currently operate with capacity constraints with conditions expected to worsen in future while many other parts of the network are predicted to require capacity enhancements without the Otterpool Park development.
- ES21. Proposals to provide pedestrian and cycle priority on key desire lines inside the site and at locations linking to existing external walk/cycle routes would significantly improve conditions for vulnerable road users at these locations. Improvements to bus and rail accessibility and services along with the Transport Strategy (ES Appendix 16.5) and Framework Travel Plan (ES Appendix 16.6) measures would encourage a shift to travel by sustainable modes as estimated for the Best Case and User Survey scenarios using the User Centric approach.
- ES22. Based upon the junction capacity assessments and the proposed interventions, it is considered that the Otterpool development traffic can be mitigated so as to not have a severe impact on the network. This will be facilitated by the Monitor and Manage Framework proposed as part of the Core Strategy to provide mitigation for the Strategic Road Network.
- ES23. It is anticipated that further discussions regarding the proposed mitigation will be held with Kent County Council, Folkestone & Hythe District Council and National Highways following submission of the Otterpool Park planning application. However, it is concluded that there are no transport reasons why planning permission should not be granted for the proposed development.

1 Introduction

1.1 Overview

- 1.1.1 Arcadis Consulting (UK) Ltd ('Arcadis') has prepared this Transport Assessment in support of an amended outline planning application seeking permission for the redevelopment of the site through the demolition or conversion of identified existing buildings and erection of a residential-led mixed-use development comprising up to 8,500 residential homes including market and affordable homes; age restricted homes, assisted living homes, extra care facilities, care homes, sheltered housing and care villages; a range of community uses including primary and secondary schools, health centres and nursery facilities; retail and related uses; leisure facilities; business and commercial uses; open space and public realm; burial ground, sustainable urban drainage systems; utility and energy facilities and infrastructure; waste and waste water infrastructure and management facilities; vehicular bridge links; undercroft, surface and multi-storey car parking; creation of new vehicular and pedestrian accesses into the site, and creation of a new vehicular, pedestrian and cycle network within the site; improvements to the existing highway and local road network; lighting; engineering works, infrastructure and associated facilities; together with interim works or temporary structures required by the development and other associated works including temporary meanwhile uses. Layout, scale, appearance, landscaping and means of access are reserved for approval.
- 1.1.2 The Otterpool Park development is located south-west of Junction 11 of the M20 motorway, and south of the HS1 and local rail link including Westenhanger Station in the administrative area of Folkestone & Hythe District Council in Kent.
- 1.1.3 The Transport Assessment sets out the baseline conditions for transport, the proposed access and travel strategy and assesses the impact of the proposals on all transport networks. Following the assessment, the measures to mitigate impacts are outlined.
- 1.1.4 In addition to the outline application development, a wider Otterpool Park Framework Masterplan Area (OPFM) includes for up to 10,000 homes, which has also been assessed within this Transport Assessment as a sensitivity assessment scenario, and included in the Environmental Statement as a cumulative effect. Full details of the development proposals are set out in the Development Specification and summarised in Chapter 5 of this document.

1.2 Site Location and Existing Land Uses

- 1.2.1 Otterpool Park is located on 589ha of land in the west of the Folkestone & Hythe district. The town of Hythe is located approximately 4.5km to the south-east with Folkestone located around 10km to the east. Ashford lies approximately 11km to the north-west. The area is broadly bounded by the M20 and HS1 and Ashford-Folkestone railway line to the north, the A20 Ashford Road/Stone Street and Sandling Park to the east, Harringe Lane to the west and Aldington Road to the south.
- 1.2.2 The Kent Downs Area of Outstanding Natural Beauty (AONB) bounds the area along its eastern and southern edges. The AONB also lies approximately 1.25km to the north.
- 1.2.3 A number of villages are within or adjacent to the development site. Westenhanger lies within the north of the site where, aside from the castle and station, existing buildings are primarily in residential use. Lympne is a residential settlement which lies just outside the site to the south-east. Barrow Hill lies to the north-west. Newingreen is adjacent to the A20 in the centre of the development area.
- 1.2.4 Lympne Distribution and Industrial Park (known as Link Park) lies in the south-west within the development boundary of the OPFM area. A large portion of the remainder of the development site area is used as agricultural land with small farmsteads.
- 1.2.5 Beyond lie a number of settlements including Stanford to the north, Sellindge to the north-west, Sandling to the north east, Pedlinge to the east and West Hythe to the south.
- 1.2.6 A regional context plan is shown in **Figure 1**.

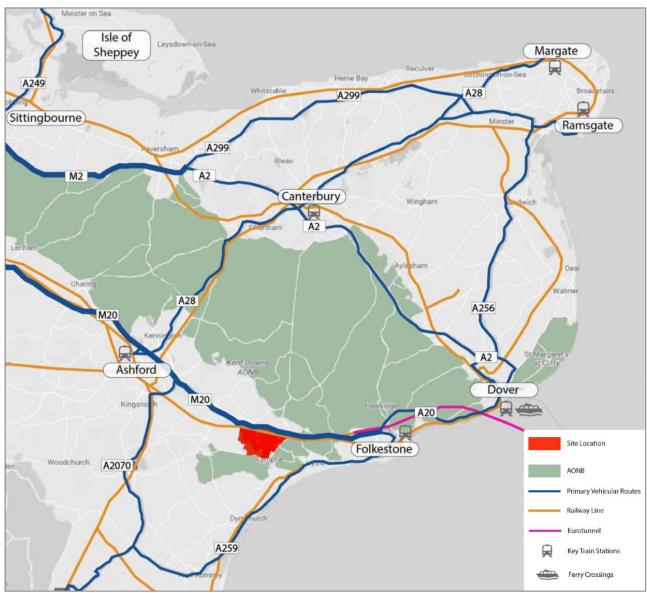


Figure 1 Regional Context Plan

1.3 Transport Assessment Scope

1.3.1 In February 2019, an outline planning application was submitted for the Otterpool Park development. The scoping discussions for the 2019 Transport Assessment (TA) submission as well as for this TA are set out below.

2019 Submission Scoping Discussions

- 1.3.2 The scope of the transport assessment for the Otterpool Park development was first discussed and agreed with Kent County Council, Folkestone & Hythe District Council and Highways England (now National Highways (NH)) during discussions between July 2017 and July 2018. A scoping note was issued in March 2018 and was subsequently updated to reflect the conclusion of the scoping discussions. Appendix A contains this updated scoping note.
- 1.3.3 The extent of the assessment study area for each mode was defined by the routes people will travel using each mode between the site and off-site locations across the UK. The study area for Walk and Cycle trips includes all existing and proposed pedestrian routes within the site boundary and

- destinations within walking distance of the site; Sellindge and Stanford, east towards Hythe, west along Aldington Road and south along Lympne Hill. The assessment of these trips considers the scale of increase of trips and the current and proposed condition of the routes.
- 1.3.4 The effect of the development on public transport was considered on the routes and services that provide access to the on- and off-site locations between which residents of and visitors to the site are expected to travel. For bus services, this included services that route to the site and other connecting services. The scale of impact on existing services that are expected to experience an increase in patronage is considered. It is acknowledged that further investigation of the effects of impacts on these services and mitigation required would be undertaken by Kent County Council and discussed with the County and local service providers.
- 1.3.5 Figure 2 presents the extent of the highway capacity study area agreed with Kent County Council, Folkestone & Hythe District Council and Highways England (now NH). Existing and committed junctions are indicated by solid black circles while junctions proposed as part of the development proposals are coloured yellow. Each of these junctions has been assessed using the appropriate LinSig, Arcady or Picady software.
- 1.3.6 Kent County Council requested that a VISSIM model be produced to assess the local junctions most likely to be impacted by the development, as indicated in Figure 2. At the time of submission of this application, the base VISSIM model has been agreed with Kent County Council, but discussions are ongoing with Highways England (now NH). The results of the VISSIM will therefore be reported separately from this Transport Assessment and will inform ongoing discussions regarding highway impact mitigation.
- 1.3.7 Merge/diverge assessments have been undertaken within the study area on the M20 and at the A20 slip roads near Alkham Valley.

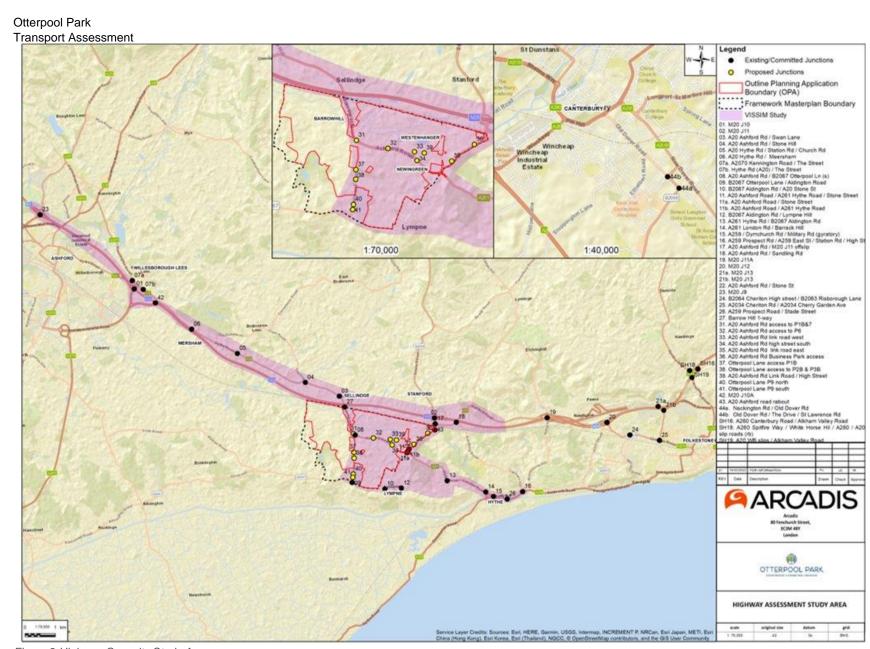


Figure 2 Highway Capacity Study Area

Scoping Discussions Post 2019 Submission

- 1.3.8 Since the 2019 TA submission, there have been comments raised by stakeholders including from KCC and HE, these have been addressed through further scoping discussions. The main topics discussed are summarised below. An updated Trip Generation Technical Note contained within Appendix N to this updated TA and an updated Mode Split Technical Note contained within Appendix O provide a more detailed summary of these discussions:
 - Following discussions held with KCC in April 2020, updates were made to how trip rates were
 calculated for extra care housing (C2) and business park land uses within the TRICS database.
 Additionally, clarification was provided regarding comments made in relation to multi-modal trip
 rates, with further information regarding trip rates by mode and by land use being outlined in a
 separate note contained within Appendix P.
 - A more updated version of the TRICS database was used compared with the 2019 TA, resulting in changes to C3 Residential and C1 hotel calculated trip rates.

Assessment Years and Scenarios

- 1.3.9 The following forecast years have been assessed:
 - 2018 Base Year: pre-construction 'no scheme' baseline
 - 2037: the end of the Folkestone & Hythe District Council Local Plan period
 - 2044 Main Assessment (2044 8.5k): the forecast year of full build-out for the 8,500 homes and associated land uses. The Otterpool Masterplan assumes the completion of 8,500 homes in 2042, however, assessing the year 2044 provides a worst case assessment in terms of transport assessment for vehicles with the inclusion of two additional years of traffic growth. This represents the main assessment for the Outline Planning Application
 - 2044 Sensitivity Assessment (2044 10k): representing the year of full build-out for OPFM, including 10,000 homes.
 - 2044 Quantum for Approval (2044 8.5k) Sensitivity Test: There is a necessity within the transport assessment main assessment to use the Illustrative Accommodation Schedule and Illustrative Masterplan due to the requirement to identify the trip origin and destinations. The quantum of development set out within the Illustrative Accommodation Schedule is lower than that for which approval is requested within the Development. This test compares the vehicle trips generated by this uplifted quantum to the 2044 Main Assessment (2044 8.5k) and the 2044 Sensitivity Assessment (2044 10k).
- 1.3.10 The future year assessments include two scenarios:
 - 1) Do-Minimum (DM), which includes:
 - committed highway improvement schemes
 - forecast baseline traffic flows.
 - 2) Do-Something (DS), which includes:
 - committed highway improvement schemes
 - highway schemes proposed for the Otterpool Park Development
 - forecast baseline traffic flows
 - Otterpool Park development traffic flows.
- 1.3.11 For each assessment year a weekday morning peak hour (0800 to 0900) and a weekday evening peak hour (1700 to 1800) has been assessed. These time periods align with the local highway network peak periods as determined from analysis of traffic survey data, as described in Chapter 4.
- 1.3.12 A Permitted Waste Facility (PWF), comprising an anaerobic digestion plant and associated office and parking facilities at Otterpool Quarry, Ashford Road Sellindge, was granted planning permission in 2011 (planning reference SH/08/124). Given that KCC consider that this permission has been

implemented, the scenario where the PWF is included as part of the assessment of the site is reported in Section 8.6.

1.4 Transport Assessment Approach

- 1.4.1 This Transport Assessment has been undertaken using the traditional approach, agreed with the highway authorities, of a 'predict and provide' methodology derived from historic trip rate patterns. This approach relies on various sources of data including 2011 Census, TRICS surveys and the National Travel Survey. This will generate a worst case for car trips as it is based on data that is up to 10 years old and does not consider any step changes to the derived mode shares based on current travel patterns and more sustainable travel choices to be promoted by the development.
- 1.4.2 This approach has been used to provide a robust assessment for vehicle trips to demonstrate that even in such a scenario that the transport impacts can be mitigated through key improvement measures across the highway network.
- 1.4.3 However, this is not the desired approach and although key highway mitigation options have been identified to accommodate the worst-case car trips, the car trips generated by the site are not expected to reach the levels forecast, due to the proposed sustainable transport strategy and associated infrastructure to be implemented as part of the development. The Otterpool Park development and associated transport strategies will provide residents, employees and visitors with an attractive and comprehensive network of sustainable travel options that will be an attractive alternative to the use of the private car and promote active travel modes.
- 1.4.4 The future of travel, the way we work and the way in which we access services and buy goods is changing and influencing the way we travel. An alternative method to estimating the future trip generation has therefore been undertaken referred to as the User Centric approach, and puts the mobility needs of the users first. This approach is set out in Chapter 12.

1.5 Contents of Transport Assessment

- 1.5.1 The remaining Chapters of this Transport Assessment are comprised as follows:
 - Chapter Two: sets out the relevant transport policy and guidance
 - · Chapter Three: provides an overview of the baseline conditions for sustainable travel
 - Chapter Four: establishes the baseline conditions for the highway network and traffic
 - Chapter Five: contains a summary of development proposals with particular emphasis on transport
 - Chapter Six: provides details of the future traffic flow and highway network conditions
 - Chapter Seven: presents the all-mode trip generation of the Otterpool Park development for the assessment years
 - Chapter Eight: specifies the forecast trips by mode generated by the development
 - Chapter Nine: explains the distribution of development trips on the transport networks
 - Chapter Ten: presents the results of the junction capacity assessments undertaken on the agreed study area
 - Chapter Eleven: examines the effects of the development on the M20 and A20 slip roads
 - Chapter Twelve: explains the User Centric Approach
 - Chapter Thirteen: studies the effects of the development proposals on the sustainable transport networks
 - Chapter Fourteen: summarises and concludes the assessment

2 Transport Policy and Guidance

2.1 Background

- 2.1.1 This Chapter provides a review of relevant national, regional and local policy and guidance documents that has influenced the development proposals and the Transport Assessment.
- 2.1.2 As agreed with Kent County Council during scoping, the policy documents reviewed in this Chapter are as follows:
 - National Planning Policy Framework (NPPF), 2021
 - The Strategic Road Network and the Delivery of Sustainable Development Department for Transport Circular 02/13
 - Kent Local Transport Plan 4: Delivering Growth without Gridlock 2016-2031 (2016)
 - Folkestone & Hythe District Council Transport Strategy, 2011
 - Core Strategy Review, 2022
 - Places and Policies Local Plan, 2020.
- 2.1.3 Figure 3 below provides a summary of key documents listed above. A full review of these and other documents is included in Appendix B.
- 2.1.4 Of the documents in the above list, one of the most relevant is the Core Strategy Review, and hence further detail is provided below.

Core Strategy Review, 2022

- 2.1.5 The Core Strategy Review has been published for consultation under Regulation 19 of the Planning and Compulsory Purchase Act 2004 (Ref 16-9). In March 2020 the Core Strategy Review was submitted to the Secretary of State for Communities and Local Government for examination by a planning inspector. The purpose of the document is to allocate sufficient land to meet the identified development needs of the district for the period up to 2037.
- 2.1.6 This draft follows the submission draft with 2021 Main Modifications. It is an update of the adopted Core Strategy Local Plan (2013) and continues to include policies for strategic development sites. Proposed policies include the provision for a garden settlement within the North Downs character area, comprising the Otterpool Park development.
- 2.1.7 Policy SS1 District Spatial Strategy states:
 - "Housing will be delivered through a new sustainable, landscape-led settlement, with supporting town centre and community uses, based on garden town principles in the North Downs Area, in accordance with policies SS6-SS9. The garden town will maximise opportunities arising from the location, access to London and continental Europe and strategic infrastructure. Housing and supporting community uses will also be delivered through growth in Sellindge (policy CSD9)"
- 2.1.8 In addition, Policy SS6 finds that the Development would present the major opportunity to secure a high-speed rail service between Westenhanger and London St Pancras. The council is pursuing this with train operating companies, infrastructure providers and stakeholders. A transport hub could potentially be provided at the existing Westenhanger station, allowing easy transfer between walking, cycling, bus and train journeys.
- 2.1.9 The railway station upgrade and hub will potentially deliver:
 - Lengthening of the existing platforms;
 - New and refurbished station buildings with improved customer facilities:
 - A new footbridge between platforms; and
 - Car parking to meet the needs of the new town and nearby villages.

- 2.1.10 Policy SS7 outlines the place shaping principles for sustainable access and movement for the new Otterpool Park settlement:
 - "The development shall be underpinned by a movement strategy which prioritises walking, cycling and access to public transport and demonstrates how this priority has informed the design of the new settlement. All homes shall be within 800 metres/10 minutes' walk of a local neighbourhood centre with an aspiration that all homes are within 400 metres/5 minutes' walk of such facilities;
 - Development shall incorporate smart infrastructure to provide real-time and mobile-enabled public transport information in accordance with smart town principles (Policy SS9 (2));
 - A permeable network of tree-lined streets, lanes, pathways, bridleways, cycleways and spaces will be created that provides connections between neighbourhoods, the town centre, employment opportunities and public transport facilities. Footpaths, cycleways and bridleways should link to existing public rights of way, nearby villages and the wider countryside, including the North Downs Way and the SUSTRANS national cycle route network, taking account of the findings of the access strategy (Policy SS7 (1)) on sensitive habitats;
 - Road infrastructure should be designed for a low speed environment, with priority given to
 pedestrians and cyclists through the use of shared space in ultra-low speed environments and
 dedicated cycle routes and separate pedestrian walkways where appropriate. The use of grade
 separations, roundabouts, highway furniture and highway signage should be minimised;
 - A parking strategy shall be developed that balances the necessity of car ownership with the need
 to avoid car parking that dominates the street scene to the detriment of local amenity. The parking
 strategy shall deliver well-designed and accessibly-located cycle parking facilities within the town
 and neighbourhood centres, at Westenhanger Station and transport hub, as well as at employment
 developments;
 - Westenhanger Station shall be upgraded at the earliest opportunity to provide a high-speed service ready integrated transport hub, in partnership with Network Rail, the rail operator and Kent County Council, which gives priority to pedestrians, cyclists, bus and train users. The council will continue to work with Network Rail to introduce high-speed rail services from Westenhanger to central London, subject to discussions with stakeholders; and
 - The existing bus network that serves the surrounding towns and villages will be upgraded and new services provided as an integral element of the transport hub and settlement. All new homes shall be within a five-minute walk of a bus stop."
- 2.1.11 Policy SS9 sets out the infrastructure, delivery and management requirements of a new garden settlement:
 - A smart town New dwellings shall provide adaptable space suitable for home working and other buildings (including shops, cafes, commercial buildings and community facilities) shall provide facilities for working on the move; and
 - Long-term management and governance Infrastructure, the urban realm, open spaces including informal pedestrian and cycle pathways, and facilities shall be designed to take into account longterm management and maintenance requirements.

National Planning Policy

National Planning Policy Framework 2021

Chapter 9 Promoting Sustainable Transport has been reviewed and used as a guide in the making of the Otterpool Park Transport Strategy.

The Strategic Road Network and the Delivery of Sustainable Development – Department for Transport Circular 02/13

Highways England expects the promoters of development to put forward initiatives that manage down the traffic impact of proposals to support the promotion of sustainable transport and the development of accessible sites.

Other Guidance

- A Charter for Otterpool Park, 2017 Although not planning policy, Folkestone & Hythe District Council has produced a Charter setting out its aspirations for Otterpool Park (2017). The Charter included principles focusing on creating a place that is environmentally, socially and economically sustainable.
- The Kent Design Guide (Kent Design Initiative, December 2005), adopted by FHDC in 2007
- Kent County Council Interim Guidance Notes 1, 2 and 3 (2008)
- Decarbonising Transport, (DfT, 2021)
- Kent Rail Strategy (2021)
- The Design Manual for Roads and Bridges, (DfT, various dates)
- The Manual for Streets, (Department for Communities and Local Government (DCLG) / DfT, 2007)
- The Manual for Streets 2, CIHT, 2010 a companion guide to Manual for Streets (DCLG / DfT, 2010)
- Travel Plan Guidelines, (DfT, various dates).

Regional Planning Policy

<u>Transport for the South East –</u> <u>Transport Strategy June 2020</u>

The over-arching regional strategy seeks to move away from traditional methods of planning based on current practise to an approach that actively chooses a preferred future and formulating a plan to get there as a community. It seeks to move away from 'planning for vehicles' towards a focus surrounding 'planning for people' and 'planning for places.'

Kent Local Transport Plan 4: Delivering Growth without Gridlock 2016-2031 (2016)

Relevant to this development the LTP states:

"There is substantial future housing growth in the district, including the proposed Otterpool Park garden town, which will require considerable infrastructure investment to support this new town, including upgrading Westenhanger Station."

Local Plan Written Statement – Appendix 6: Kent County Council Vehicle Parking Standards, 2009

Appendix 6, of the full Local Plan Review written statement sets out the parking standards which were saved under the March 2009 Direction from the Secretary of State following the adoption of the Core Strategy Local Plan 2013. Policy TR12 states that:

"New development, redevelopment or a change of use will only be permitted if it makes provision for off street parking on or near the site in accordance with the current maximum vehicle parking standards, as set out in Appendix 6."

Local Planning Policy

Folkestone & Hythe District Council Transport Strategy, 2011

The strategy considers both transport matters which relate to the existing district area, as well as those relating to the potential Strategic Site allocations which have been made for future development.

It sets out requirement to improve walking, cycling and managing parking provision.

Core Strategy Review 2022

Policy SS1 District Spatial Strategy states:

"The potential for significant sustainable development in the district is focused on maximising strategic infrastructure where landscape capacity exists, with the creation of a new settlement in the North Downs Area. This will be a major, long-term growth opportunity, developed on garden town principles during the plan period and beyond. Policies SS6-SS9 set out rigorous design requirements and ambitious environmental and sustainability targets that the new settlement must meet to ensure its potential is realised."

Policy SS6 finds that the Development would present the major opportunity to secure a high-speed rail service between Westenhanger and London St Pancras.

Policy SS7 outlines the place shaping principles for sustainable access and movement for the new Otterpool Park settlement, including:

- The development shall be underpinned by a movement strategy which prioritises walking, cycling and access to public transport
- The development shall incorporate smart infrastructure to provide real-time transport information
- A permeable network of tree-lined streets, lanes, pathways, bridleways, cycleways and spaces will be created that provides connections throughout the development as appropriate
- Road infrastructure should be designed for a low speed environment, with priority given to pedestrians and cyclists
- A parking strategy shall be developed that balances the necessity of car ownership with the need to avoid car parking that dominates the street scene to the detriment of local amenity.
- The existing bus network that serves the surrounding towns and villages will be upgraded and new services provided.

Places and Policies Local Plan, Adopted September 2020

The Places and Policies Local Plan identifies specific sites considered suitable for development throughout the district to provide up to 2,500 new homes and land for offices, community uses and other types of development.

Transport Policies sets out the car and cycle parking standards and requirements for electric vehicle charging points.

Figure 3 Policy and Guidance Documents that influence Otterpool Park Transport Assessment

2.2 Summary

- 2.2.1 The policies and guidance in place seek an emphasis on providing development in locations where sustainable travel modes can be encouraged and to facilitate access by all modes.
- 2.2.2 The location for the Otterpool Park development is defined by its excellent existing transport connections: by road (M20); by rail (High Speed 1 and local lines); and by air (London Ashford Airport at Lydd). The District is also home to the Channel Tunnel and Eurostar services at Folkestone and is just a short distance from the UK's busiest ferry port at Dover.
- 2.2.3 The masterplan for Otterpool Park has been developed, through consultation with Folkestone & Hythe District Council, Kent County Council and other key stakeholders, to create a highly-sustainable garden settlement. The Otterpool Park development and associated access and travel strategy will provide residents, employees and visitors with an attractive and comprehensive network of sustainable travel opportunities to provide viable alternatives to travel by private car. This will be balanced against ensuring that the highway access arrangements are robust enough to sustain additional traffic movements, provide connectivity to existing routes and allow the existing network to function within reasonable limits without causing significant issues for Otterpool Park and existing local residents. Further information regarding development proposals and the Transport Strategy are described in Chapter 5.
- 2.2.4 The Transport Assessment and associated Transport Strategy (ES Appendix 16.5) and Framework Travel Plan (ES Appendix 16.6) have been developed to accord with the key policies summarised in this section.

3 Baseline Conditions for Sustainable Modes

3.1 Introduction

3.1.1 This Chapter describes the existing conditions on the walking, cycling and public transport networks within the study area. The information in this Chapter has been informed by site observations and audits, client liaison meetings and desktop-based analysis and, along with the baseline highway information in Chapter 4, has informed the development of the masterplan and the Transport Strategy for Otterpool Park.

3.2 Walking and Cycling

3.2.1 Figure 4 presents the existing walking and cycling networks and bridleways across the site and in the local area. The following sections provide an outline of the key walking and cycling routes and current aspirations for enhancement. These sections also make reference to the findings of the Walking and Cycling Study¹ commissioned by Folkestone & Hythe District Council to investigate the current walking and cycling environment in the area and consider improvements that would complement the Otterpool Park masterplan proposals.

Walking and Cycling Environment

- 3.2.2 Otterpool Park is located in a rural setting and benefits from various public footpaths and byways located largely to the outskirts of the site, connecting residential areas with their surrounding areas. However, walking accessibility through the site is limited with many areas lacking a coherent network for pedestrians to navigate across the site and connect into external links.
- 3.2.3 A description of the walking and cycling environment on existing highway routes within and surrounding the site is provided in the following sections.

A20 Ashford Road

- 3.2.4 The A20 Ashford Road routes through the site and links it to Barrow Hill, Sellindge and, further afield, Ashford to the west and Newingreen, Sandling Park and the M20 Junction 11 to the east.
- 3.2.5 Footway provision along the A20 varies. Along its eastern boundary adjacent to Sandling Park, a footway of around 1-1.5m in width is located on the western side only, separated from the carriageway by a narrow grass verge and bollards spaced between 4.5-5.5m apart, as shown in Photograph 1. As the A20 turns west, footpaths of between 1.5m and 2m in width are located on both sides of the road for a distance of around 150m from the junction with the A261 Hythe Road and Stone Street, as shown in Photograph 2. West of this section, the footpath on the north side is replaced by a grass verge and hedgerows. The southern footpath extends through the junction with Otterpool Lane through Barrow Hill and Sellindge, as shown in Photograph 3. A footpath is regained on the northern/eastern side as it routes north through Barrow Hill to Sellindge, as seen in Photograph 4. The A20 narrows to one lane under the railway bridge north of Barrow Hill but maintains footpaths on both sides of the road, as shown in Photograph 5.
- 3.2.6 There is a lack of formal pedestrian crossing facilities along the length of the route with the exception of a signalised pedestrian crossing on the southern arm of the junction with Otterpool Lane. However, there appears to be some evidence of the verges being used as informal pedestrian routes particularly where public rights of way (PRoW) cross the A20, described in more detail later in this section.

¹ Otterpool Park Garden Town, Kent Walking and Cycling Study (Mott Macdonald, August 2018).

- 3.2.7 No infrastructure is provided for cyclists and the alignment of the A20, particularly on the section south of the junction with the M20, poses a particularly challenging environment for all but the most experienced cyclists.
- 3.2.8 The Folkestone & Hythe District Council Walking and Cycling Study (footnote 3) considered a number of possibilities for enhancement of the walking and cycling networks was identified for this route:
 - Introducing a shared footway and cycleway on the southern side of the A20 to connect with a
 possible cycle route to Folkestone along the A20;
 - Introducing cycle and pedestrian crossing phases at the Otterpool Lane signals in order to facilitate walking and cycling movements to Lympne Industrial Park;
 - Provision of safe crossing points over the A20, between A261 and M20 to the existing HE/281 footpath; and
 - Provision of a re-aligned A20 through the development.

Photograph 1 Footway separated by grass verge and bollards north of Sandling Park entrance

Photograph 2 Footways along both sides of the A20 at A20/A261/Stone Street junction

Photograph 3 Footway along southern edge of A20 through junction with Otterpool Lane

Photograph 5 Footway along both sides of A20 under rail bridge towards Sellindge

Otterpool Park Transport Assessment Outline Planning Application Boundary (OPA) Framework Masterplan Boundary CYCLE ROUTES National Cycle Network Route PUBLIC RIGHTS OF WAY Byway Open to All SELLINDGE - Public Bridleway - Public Footpath STANFORD d BARROWHILL WESTENHANGER/ NEWINGREEN Layer Credits: Contains Ordnance Survey data © Crown copyright 2018 OS 0100031673 **ARCADIS** LYMPNE Lympne Industrial Estate Arcadis 80 Fenchurch Street, EC3M 4BY London SHEPWAY DISTRICT OTTERPOOL PARK LOCAL WALKING AND CYCLING NETWORKS scale original size datum 1: 20,000 A3 Sx

Figure 4 Local Walking and Cycling Network

Otterpool Lane

- 3.2.9 Otterpool Lane routes south of the A20 from a location east of Barrow Hill through the heart of the southern section of the Otterpool Park site and provides access to the Link Park industrial estate and thus provides access for large vehicles. There are no formal footpaths on either side of the road, although it is possible to traverse part of the length of the road on a grass verge on the western side of the road.
- 3.2.10 With the exception of the signal-controlled pedestrian crossing at the junction with the A20, there are also no pedestrian crossing facilities or traffic calming measures along the length of the road, with most of the road subject to the national speed limit. Pedestrian facilities at the junction with the A20 is shown in Photograph 6.

Photograph 6 Pedestrian crossing facilities at A20/Otterpool Lane signalised junction

Stone Street

- 3.2.11 Routing south from the junction with the A20 and the A261 Hythe Road, Stone Street provides access for pedestrians and cyclists to Lympne. A footpath is provided on at least one side of the road for its entire length, averaging between 1.5m and 2m in width, as shown in Photograph 7.
- 3.2.12 Stone Street provides no formal pedestrian crossing or cycling facilities or traffic calming features.

Photograph 7 Footway along one side of Stone Street, south of junction with A20 and A261

Aldington Road

- 3.2.13 Aldington Road routes west-east from Aldington in the west to a junction with the A261 Hythe Road in the east, forming junctions with both Otterpool Lane and Stone Street.
- 3.2.14 West of the junction with Otterpool Lane, the carriageway is flanked by hedgerows making it impossible for pedestrians to traverse it other than on the carriageway, as shown in Photograph8. The high hedgerows make visibility difficult.
- 3.2.15 The section between Otterpool Lane and Octavian Drive offers a footpath on the northern side for most of its length, as shown in Photograph 9. East of the junction with Octavian Drive, Aldington Road offers no off-road route for pedestrians towards the junction with A261 Hythe Road.

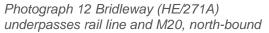
Photograph 8 No footways along Aldington Road west of junction with Otterpool Lane

Photograph 9 Footways along northern side of Aldington Road between Otterpool Lane and Octavian Drive

A261 Hythe Road

- 3.2.16 The A261 Hythe Road junction with the A20 is heavily-trafficked and congested at peak periods. This junction, and the one adjacent to the west between the A20 and Stone Street, offer no pedestrian or cycle crossing facilities.
- 3.2.17 There is no footway provision along the length of the A261 Hythe Road until it meets Aldington Road. East of this junction, a narrow footpath is provided on the southern side, as shown in Photograph 10 below.
- 3.2.18 This heavily-trafficked road is not currently a suitable route for pedestrians, while cyclists would find its narrow and winding nature a challenging environment. The Folkestone & Hythe District Council Walking and Cycling Study identifies this route as a priority for improvement with regard to cycle linkages.

Photograph 10 Narrow footway along southern side of A261 Hythe Road to the east of the junction with Aldington Road


Public Rights of Way

- 3.2.19 The network of public rights of way (PROW), as well as other footpaths and bridleways, within close proximity to the site are shown within Figure 4.
- 3.2.20 There are 11 PRoW that route internally within the site area, providing connections between the villages of Sellindge, Newingreen, Lympne and Westenhanger. Arcadis has undertaken a detailed access and patronage survey of these routes as part of the socioeconomic assessment contained in Chapter 14 of the Environmental Statement (ES). This section provides details of a selection these existing routes.
- 3.2.21 Photograph 11 presents public footpath HE/275, which routes through the site between the railway line and the A20 within the vicinity of the Racecourse. Photograph 12 illustrates the condition of Bridleway HE/271A north of the site which routes from A20 Barrow Hill passing under the Railway line and M20. There are existing issues with north-south permeability and lack of wider connections and links over the railway line and M20.
- 3.2.22 Photographs 13 and 14 show the mixed condition of existing public footways in both the northern and eastern vicinity of Westenhanger Station.

Photograph 11 Access to footpath from the A20 (HE/275)

Photograph 13 Footpath (HE/227) Routing parallel to the Railway line, Westenhanger

Photograph 14 Footpath (HE/221A) routing eastwards from Westenhanger

- 3.2.23 Footpaths HE/281 and HE/313 provide connections to the east into Hythe. There are currently no controlled crossing facilities on the A20 allowing pedestrians to cross safely, and the alignment of the A20 does not provide ideal visibility for drivers. As a result, there are some issues with east -west severance. A Walking and Cycling Study commissioned by Folkestone & Hythe District Council identifies the A20 and A261 as two key severance features within the study area which will need to be addressed. The A20 in particular dissects the study area which could have a severe impact on the wider permeability of the site.
- 3.2.24 There are also a number of nearby recreational areas including:
 - Harringe Brooke Wood situated on the western boundary of the site comprising an area of woodland adjacent footpath HE/316; and
 - Royal Military Canal is accessed at West Hythe approximately 1km from the site via an existing footpath HE/319 and bridleway HE/317.
- 3.2.25 The Walking and Cycling Study (footnote 3) commissioned by Folkestone & Hythe District Council also identified a number of opportunities for improving cycling and walking connections to the surrounding area of Otterpool Park. In summary these comprise:
 - Cycle linkages to the Hythe area;

- Cycle linkages to the Folkestone area;
- Connections with Westenhanger Railway Station, particularly to the north; and
- Integration of internal road network and surrounding PRoW.

Designated Cycle Routes

- 3.2.26 At present there are no dedicated cycle routes in the immediate vicinity of the site. However, the coastal National Cycle Network Route 2 lies approximately 1km south of the southern boundary of the site and is a popular long-distance recreational route following the English Channel coastline.
- 3.2.27 The section closest to Otterpool Park is traffic free and runs between West Hythe and Folkestone to the east and towards Romney Marsh in the west. The route runs along the canal towpath through West Hythe, Hythe and Folkestone. Cyclists can access the route via Royal Military Road which is located at the southern point of Lympne Hill, the nearest connection to the site. These routes are shown in Figure 4.
- 3.2.28 Regional on-road cycle route 17, also runs to the east of Otterpool Park providing connections to Canterbury and Dover.
- 3.2.29 Other than the designated cycle routes it would be considered that there very little existing cycle infrastructure within the vicinity of Otterpool Park. The Mott Macdonald; Walking and Cycling Strategy identified the presence of painted west and eastbound cycle lanes on the carriageway between the A20/ M20 roundabout junction and Sandling Road.

Walking and Cycle Accessibility

- 3.2.30 The accessibility of Otterpool Park on foot and bicycle has been assessed using TRACC software, by considering distances reached by walking and cycling modes for appropriate timescales from the centre of the site.
- 3.2.31 It is considered that journeys of up to 1200m (which equates to approximately 15-minutes) represent the preferred maximum acceptable walking distance (Guidelines for Providing Journeys on Foot, IHT, 2000). Figure 5 shows that the majority of the Otterpool Park site is within a 20-minute walk (approximately 1.6km) and areas of Sellindge and Lympne within a 30-minute walk (approximately 2.4km) of a node.
- 3.2.32 It is widely regarded that cycling has potential to substitute for short car trips, particularly those less than 5km, as well as forming part of a longer journey by public transport. At a speed of 15km/h (the default standard cycling speed within TRACC software) a 5km distance equates to a journey time of around 20 minutes. Figure 6 illustrates that the majority of Otterpool Park is accessible within a 15-minute cycle. A threshold of up to 30 minutes is shown to extend to Folkestone and Hythe, including National Cycle Network Route 2. Whilst, a 45-minute cycle accesses National Cycle Network Route 18 and the regional network to Canterbury.

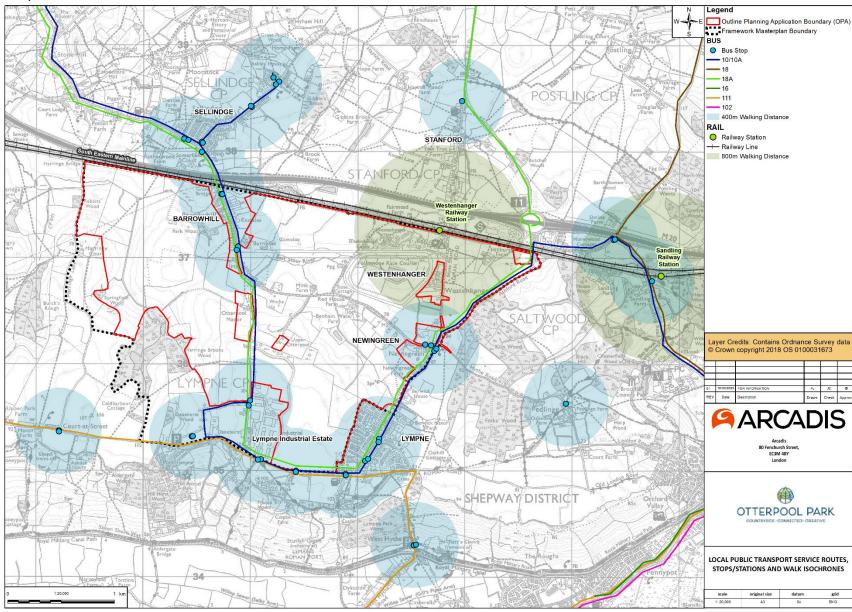


Figure 5 Existing Public Transport Provision and Walk Isochrones

Otterpool Park Transport Assessment Legend o Isochrone Centre Outline Planning Application Boundary (OPA) Framework Masterplan CYCLE ROUTES -National Cycle Network Route -National Cycle Network Link -Regional Route Cycling Journey Time - 15 mins Cycling Journey Time - 30 mins Cycling Journey Time - 45 mins **ARCADIS** OTTERPOOL PARK **EXISTING STRATEGIC CYCLE ROUTE MAP** AND CYCLE ISOCHRONES

Sources, Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thaliand), NGCC, © OpenStreetMap contributors, and the GIS User Community

Figure 6 Existing Cycle Route Map and Isochrones

Access to Local Amenities

3.2.33 The proposed Otterpool Park development will provide a new town centre and include local centres, schools, health facilities, community facilities, retail, leisure and employment (see Table 1). In terms of the baseline of local amenities, there are also a number of existing local facilities and services which are accessible within a reasonable walking and cycling distance (within 5km 'crow flies' distance) of the site. The location of these facilities and services is presented in **Error! Reference source not found.**

Table 1 Existing Accessible Facilities and Services via Walking and Cycling

Ref.	Name	Location	Ref.	Name	Location
Child	Care Facilities				
1	Badgers Bridge, Folkstone	Postling	9	Lyminge Pre-school	Lyminge
2	Badgers Bridge, Hythe	Lyminge	10	Mershams Little Stars	Mersham
3	Hythe Bay	Hythe	11	Punch and Judy Playgroup	Lympne
4	Kaleidoscope Childcare	Aldington	12	Rising Fives Nursery	Ashford
5	Little Cubs Palmarsh Preschool	Palmarsh	13	Saltwood Play and Learning Centre	Saltwood
6	Little Explorers Hythe	Hythe	14	Smeeth Play Club	Smeeth
7	Little Learners at Sellindge Pre-school	Sellindge	15	Stepping Stones Nursery	Hythe
8	Lullabies	Hythe	-	-	-
Prima	ary Schools				
16	Aldington Primary School	Aldington	22	Palmarsh Primary School	Palmarsh
17	Brabourne Church of England Primary School	Brabourne	23	Saltwood Church of England Primary School	Saltwood
18	Hythe Bay Church of England Primary School	Hythe	24	Sellindge Primary School	Sellindge
19	Lyminge Church of England Primary School	Lyminge	25	Smeeth Community Primary School	Smeeth
20	Lympne Church of England Primary School	Lympne	26	St. Augustine's Catholic Primary School	Hythe
21	Mersham Primary School	Mersham	27	Stowting Church of England Primary School	Stowting
Seco	ndary Schools				
28	Brockhill Park Performing Arts College	Saltwood	35	The Marsh Academy	New Romney
29	Folkestone Academy	Folkestone	36	The North School	Ashford
30	Highworth Grammar School	Ashford	37	The Norton Knatchbull School	Ashford
31	Homewood School and Sixth Form Centre	Tenterden	38	Towers School and Sixth Form Centre	Kennington
32	The Folkestone School for Girls	Folkestone	39	Turner Free School	Folkestone
33	The Harvey Grammar School	Folkestone	40	Wye School	Wye

Ref.	Name	Location	Ref.	Name	Location
34	The John Wallis Church of England Academy	Ashford	-	-	-
Prima	ary Healthcare		'		'
41	Sellindge Surgery	Sellindge	44	New Lyminge Surgery	Lyminge
42	Oaklands Health Centre	Hythe	45	Dr Zaw Thike (Church Road)	Lyminge
43	Sun Lane Surgery	Hythe	-	-	-
Comi	munity Halls				
46	Palmarsh Village Hall	Palmarsh	54	The Tin Tabernacle	Hythe
47	Saltwood Lad's Club	Saltwood	55	Hythe Royal British Legion Hall	Hythe
48	Saltwood Village Hall	Saltwood	56	Mountbatten Hall	Mersham
49	Sellindge Village Hall	Sellindge	57	Brabourne and Smeeth Village Hall	Brabourbe Lees
50	Lyminge Village Hall	Lyminge	58	Smeeth Scout and Guide Hall	Smeeth
51	Tayne Centre	Lyminge	59	Lympne Village Hall	Lympne
52	Village Hall, Newington	Newington	60	Postling Village Hall	Postling
53	The Saltwood Club	Saltwood	-	-	-
Place	es of Worship				
61	All Saints Church, Stanford	Stanford	75	Brabourne Baptist Church	Brabourne
62	St Stephen's Church, Lympne	Lympne	76	St Mary the Virgin Church, Smeeth	Smeeth
63	St Peter and St Paul's Church, Saltwood	Saltwood	77	St John the Baptist	Mersham
64	Holy Cross Church	Palmarsh	78	Aldington Evangelical Mission	Aldington
65	St Leonard's Church	Hythe	79	St Martin's Church, Aldington	Aldington
66	Hythe Spiritualist Church	Hythe	80	St Rumwold's Church, Bonnington	Bonnington
67	St. Michael's Church	Hythe	81	All Saints Church, Burmarsh	Burmarsh
68	Hythe United Reformed Church	Hythe	82	St Mary and St Radegund, Postling	Postling
69	Virgin Mother of Good Counsel	Hythe	83	Sellindge Methodist Church	Sellindge
70	Saint Nicholas Church, Newington	Newington	84	St Mary the Virgin Church, Sellindge	Sellindge
71	St Mary & St Ethelburga Church, Lyminge	Lyminge	85	St Peter's Church, Monks Horton	Monks Horton
72	Lyminge Methodist Church	Lyminge	86	Hythe Salvation Army Church	Hythe
73	St Mary the Blessed Virgin Church, Brabourne	Brabourne	87	Kingdom Hall of Jehovah's Witnesses, Hythe	Hythe
74	St Mary the Virgin Church, Stowting	Stowting	88	Zion Strict Baptist Chapel, Brabourne Lees	Brabourne Lees

Source: Quod; Draft Community Facilities Delivery Strategy (February 2019)

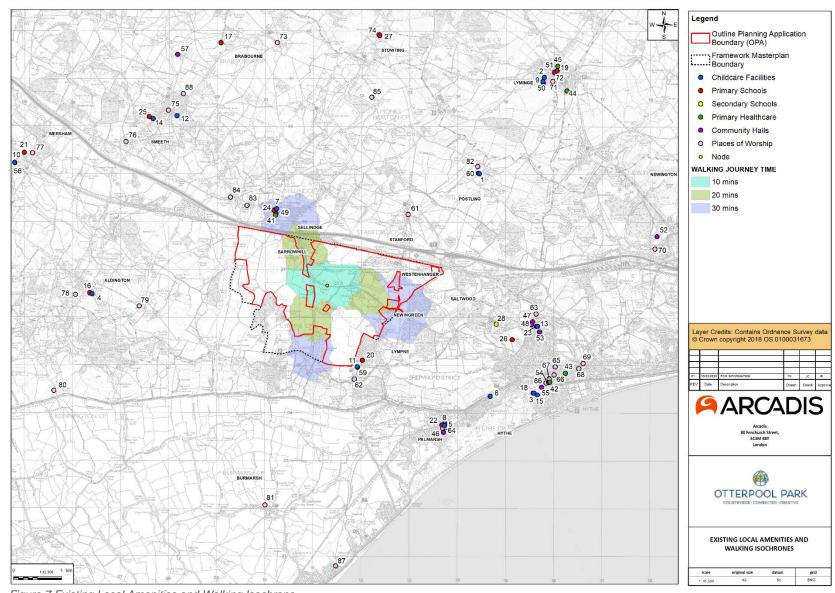


Figure 7 Existing Local Amenities and Walking Isochrone

3.3 Public Transport Network and Services

Bus Services and Infrastructure

- 3.3.1 The following range of walking distances in order to access a bus stop on foot for individuals without mobility impairment are set out by the Chartered Institution of Highways & Transportation²:
 - Desirable (400m);
 - Acceptable (800m); and
 - Preferred maximum (1.2km).
- 3.3.2 Although the existing site for Otterpool Park predominantly comprises agricultural land, there are in total 22 existing bus stops located within the study area. Bus stops are located on the strategic and local routes within the area, namely along the A20 Ashford Road, B2067 Aldington Road and Stone Street between Aldington Road and Ashford Road. Within the Otterpool Park area, bus services currently route along the A20 Barrow Hill/ Ashford Road, B2067 Otterpool Lane, Stone Street and Aldington Road. A plan showing existing bus service routes is provided in Figure 5. Table 2 summarises the services which serve the bus stops along these routes. Figure 5 presents the location of bus stops in the vicinity of the site and a 400m walk distance isochrone around each bus stop.
- 3.3.3 The 10/ 10A bus service provides a regular bus service between Folkestone and Ashford and has the highest frequency (hourly, Monday to Friday) of all the bus services in the Otterpool Park area. The 111 operates on a Thursday only, between Ashford and Folkestone via Aldington and Burmarsh. The 18A runs daily, once in the morning and returns in the afternoon, taking local children to and from schools in Folkestone and Canterbury and only operates on school days. As of 20th July 2021, services are as shown in Table 2.

Table 2 Summary of Local Bus Services (One-way Frequency)

Bus	Route		Frequency (One-way	′)
Number	Route	Monday - Friday	Saturday	Sunday
10/10A	Ashford – Folkestone	Hourly	Hourly	2 hours (No.10 only)
16	Hythe - Canterbury	School Service		
18	Hythe - Canterbury	5 Service	5 Services per day	
18A	Ashford – Canterbury	School Service	-	-
111	Ashford – Folkestone	Once on Thursday only	-	-

Source: Traveline South and East (20th July 2021)

Rail Station and Services

3.3.4 Westenhanger Railway Station is located in the north-eastern corner of the Otterpool Park area. The station is strategically located on the Mainland Railway route connecting Ashford and Dover. All trains serving Westenhanger are operated by South-eastern. Facilities at the station are limited and include outdoor seating and limited free car parking. The station is unstaffed,

² Guidelines for Providing for Journey on Foot (Institution of Highways & Transportation, 2000)

Transport Assessment

- there is no waiting room or cycle parking facilities and there is a general lack of accessibility for the mobility impaired.
- 3.3.5 Table 3 presents a summary of key destinations and the frequency of services from the station, which includes hourly (two trains an hour at peak times) eastbound services into Folkestone. Westbound, there is an hourly service to Ashford (half hourly at peak times), where high speed (HS1) services to Stratford International and London depart from.

Table 3 Summary of Rail Services from Westenhanger Railway Station

Destination	Journey Time	Frequency (approx.)
Ashford International	9 minutes	30 mins (peak) / 60 mins (off-peak)
Folkestone Central	11 minutes	30 mins (peak) / 60 mins (off-peak)
Dover Priory	24 minutes	30 mins (peak) / 60 mins (off-peak)
London St Pancras	1 hour	30 mins (peak: change at Ashford)
London Charing Cross	1 hour 33 minutes	30 mins (peak)/ 60 mins (off-peak)

Source: National Rail Enquiries (20th July 2021)

3.4 Summary

- 3.4.1 The local transport network and walking and cycling environment has been assessed, describing the site's accessibility and environmental surroundings, including the existing extensive network of PRoW. Walking accessibility through the site is currently restricted and there are no designated cycle routes in the immediate vicinity.
- 3.4.2 The highway network and railway line surrounding the site provides severance for pedestrian and cyclists connecting to the surrounding areas with a lack of existing formal and safe crossing opportunities on a number of roads.
- 3.4.3 The public transport network is relatively limited in terms of bus services, with infrequent hourly services between Folkestone and Ashford as well as a number of school services routing through the study area. However, the existing bus service does pass through the central part of the Otterpool Park site, presenting opportunities to enhance existing services to serve future residents.
- 3.4.4 The local area is well connected to the rail network, with hourly services running to Ashford International (with onward connections to London), Folkestone Central and Dover Priory. However, there are inadequate facilities at Westenhanger Station comprising lack of car parking, no cycle parking provision and limited mobility access.

4 Baseline Local Highway Conditions

4.1 Introduction

- 4.1.1 This Chapter describes the existing conditions on the highway network within the highway capacity modelling study area, as shown in Figure 2 and has been informed by site observations and audits, survey data collection, client liaison meetings, as well as desktop-based analysis.
- 4.1.2 The information in this Chapter has been used to inform the development of the masterplan and provided the foundation on which the Otterpool Park Transport Strategy described in Chapter 5 has been developed.

4.2 Key Links within the Study Area

4.2.1 Figure 8 presents the local highway network within the vicinity of the site. The following sections describe the nature of the key links within the study area.

M20 Corridor

- 4.2.2 The M20 motorway connects Kent with the M25 and London. It terminates in the east at Junction 13, on the northern outskirts of Folkestone. The M20 within the vicinity of Otterpool Park comprises three lanes in either direction, subject to the national motorway speed limit.
- 4.2.3 Junction 11 is a grade-separated five-arm junction which lies directly adjacent to the north-east corner of the site and is the main gateway to the site from the motorway. Junction 11 connects with the A20 (south), B2068 (north) and the STOP 24 Service Station via a five-arm roundabout. Junction 11 gives access to the M20 westbound (Ashford and London) and eastbound (Folkestone, Dover and continental Europe via ferry or Eurotunnel). Junction 11 serves as the main gateway highway access to the Otterpool Park site from the wider area.
- 4.2.4 Junction 11A to the east provides eastbound on-slips (from the A20) and westbound off-slips (from the Eurostar terminal) to the M20. Junction 12 consists of a grade-separated four-arm roundabout, with two arms providing on/off slips to the M20. The roundabout links to the A20 Ashford Road in the north and Cheriton Approach to the south, which provides access into Folkestone along Cheriton Road.
- 4.2.5 Junction 13 provides on- and off-slips linking to two mini-roundabouts; one to the north on the A20 and one to the south linking the A20 to the A259, which routes to/from the east, and the A2034 Cherry Garden Avenue routing south towards Cheriton Road. Just east of Junction 13, the M20 becomes the A20.
- 4.2.6 Junctions 9 and 10 provide access to Ashford. Both are four-arm grade-separated junctions, of which two arms consist of east- and westbound on/off slips to the M20. Junction 9 provides access to Ashford north of the M20 via Trinity Road and south via Fougeres Way. Junction 10 provides access to north Ashford via Kennington Road and south via Bad Munstereifel Road. Junction 10A and a link road to the A2070 is currently under construction and due to be completed by summer 2020.
- 4.2.7 Nationals Highways constructed a new Junction 10A on the M20 and link road to the A2070 at Ashford in Kent, completed on 31st October 2019. A Transport Assessment³ has been produced, assessing the associated impact of the proposed improvement scheme. This scheme is not part of the 2018 Base Year assessment, as it was not implemented in that year,

³ M20 Junction 10A TR010006 7.2 Transport Assessment Report

but is included on the subsequent assessment scenarios. The key features of the scheme include:

- A new interchange junction approximately 700m east of Junction 10 over the M20;
- New dual carriageway link road to the existing A2070 Southern Orbital Road;
- A20 Hythe Road connection;
- New footway linking the A20 Hythe Road to the Church Road Footbridge across the A2070;
- New Kingsford Street footbridge across the M20 and a new Church Road footbridge; and
- New Kingsford Street retaining wall.
- 4.2.8 The key features of the M20 Junction 10A gyratory are:
 - A new three lane gyratory roundabout connected to a new southern link road and the existing A20 Hythe Road. Partially signalised with new east and west facing slip roads;
 - Street lighting proposed on the gyratory carriageway and on the four slip roads;
 - New Kingsford Street footbridge/ cycleway to allow safe access over the motorway for nonmotorists; and
 - Kingsford Street improvements to include a new safety barrier, 350m footway, acoustic barrier and planting.
- 4.2.9 The A2070 Southern Orbital Road features:
 - A new dual carriageway link road with a 40mph speed limit located between the proposed new Junction 10A and the A2070;
 - A new three-armed roundabout joining the new link road to the existing A2070;
 - A realignment of the existing A2070 where it joins the link road;
 - New Church Road footbridge/ cycleway replacing the old bridge; and
 - Minor improvements to the A2070/ Barrey Road junction.

A20 Ashford Road / Barrow Hill / Hythe Road

- 4.2.10 The A20 is a major distributor road in Kent and crosses the Otterpool Park area from east to west and also forms the north-eastern boundary of the area. The A20 Ashford Road provides access to the M20, via Junction 11. The road consists of a single carriageway subject to a 50mph limit through the site, reverting to 40mph limit through Barrow Hill and 30mph through Sellindge village.
- 4.2.11 The existing road alignment of the A20 Ashford Road leading to Junction 11, comprises a substandard section resulting in poor driver visibility and potential road safety performance, assessed later in the Chapter. In addition, the typical daily flow capacity of a rural road of this current character (Rural S2 Road in TA 46/97), the A20 at this location appears to be operating slightly above capacity with the existing flows. This is discussed in more detail in Chapter 5.
- 4.2.12 The A20 Barrow Hill is constrained by a single lane section, controlled by traffic signals, where the road passes under the high-speed and Network Rail lines south of Sellindge. Underneath the railway bridge there is a height restriction of 4.7m. North of Barrow Hill, the A20 Hythe Road provides a route to/from Ashford. A number of residential premises are accessed from the A20 within the Otterpool Park area. Photographs 5 and 6 present two locations on the A20.

Photograph 5 A20 Ashford Road Northbound towards M20 Junction 11

B2067 Otterpool Lane

- 4.2.13 The B2067 Otterpool Lane comprises a single carriageway road with a north south alignment routing through the site. The road is predominantly subject to the national speed limit, which reduces to 50mph at the northern extent within the vicinity of the signalised junction with the A20 Ashford Road. The southern end of Otterpool Lane forms a priority junction with Aldington Road.
- 4.2.14 The road provides access to Lympne Industrial Park, Lympne Animal Park and Gardens, and a farm. Otterpool Lane is bounded by hedgerows and rural land. There are no footways present along the road (Photograph 7).

Photograph 7 Ashford Road leading to Otterpool Lane

A261 Hythe Road

- 4.2.15 The A261 Hythe Road connects the A20 at Newingreen with the A529 within Hythe, comprising a single carriageway road with no footway provision. The road is predominantly subject to the national speed limit, which reduces to 30mph on approach to the built-up area of Hythe.
- 4.2.16 It should be noted that there is a sharp double curve in the road alignment through the village of Pedlinge. Photograph 6 presents Hythe Road northbound approaching the junction with the A20 Ashford Road.

Aldington Road

- 4.2.17 Aldington Road forms the southern boundary of the Otterpool Park area. It has an approximate east-west alignment, extending from the A261 Hythe Road in the east past Lympne Hill and Otterpool Lane to form a priority junction with Roman Road and Knoll Hill in the west.
- 4.2.18 Aldington Road is a narrow single carriageway road. There is a 2m width restriction (except for access) east of the junction with Lympne Hill. These width restrictions are sign-posted to the east of the Aldington Road/ Stone Street junction and on the east side of the Lympne Hill junction. Aldington Road becomes narrow to the west of the Otterpool Lane junction where it becomes the B2067, potentially allowing only one vehicle at a time to pass through.
- 4.2.19 The road is subject to the national speed limit, which reduces to 30mph within Lympne. A footway is provided along the northern side of the carriageway between Lympne Distribution Park and Octavian Drive, within Lympne. In addition, the route has a hilly terrain sloping in a westerly direction (Photographs 9 and 10).

Photograph 9 Aldington Road West-bound

Photograph 10 Aldington Road West-bound

Harringe Lane


- 4.2.20 Harringe Lane has an approximate north-south alignment extending between the A20 and B2067, located at the north-western boundary of the Otterpool Park area. The road provides access to a limited number of residential properties and farmland.
- 4.2.21 The narrow country lane is bounded with hedgerows and can only accommodate one-way traffic movements with regular passing points. Harringe Lane is subject to width restrictions with signage restricting vehicles of a width greater than 1.98m (except for access). There is no footway provision along the road.

Stone Street

- 4.2.22 Stone Street was a Roman road between Lympne and near to Canterbury. In the study area it extends northwards from Aldington Road to the junction with the A20 Ashford Road and the A261 Hythe Road. Stone Street also extends further north from the A20 providing access to Westenhanger Railway Station. The road is separated by a small section of the A20 Ashford Road and as such has been split into the following two sections for this study; Stone Street south (between Aldington Road and Hythe Road) and Stone Street north (north of the A20).
- 4.2.23 The southern section comprises a single lane carriageway allowing for two-way movements, with the exception of one-way priority traffic calming measures in place north of Lympne built up area. At the Aldington Road junction, signage states that Stone Street is 'Unsuitable for heavy goods vehicles. The road is subject to a 40mph speed limit, which reduces further within the settlement boundary to 30mph. Footways are predominantly provided along at least one side of the carriageway.
- 4.2.24 The northern section, which provides access to Westenhanger Rail Station and a number of residential properties, comprises a narrow single carriageway road, subject to a speed limit of 30mph.
- 4.2.25 North of Westenhanger Railway Station, Stone Street narrows to a single-track road on a bridge over the railway line before coming to an end by the M20 motorway. There is also a section of Stone Street north of M20 motorway, beyond the study area (Photographs 11 and 12).

Photograph 11 Stone Street South-bound, approaching Aldington Road

Photograph 12 Stone Street North-bound, through Lympne

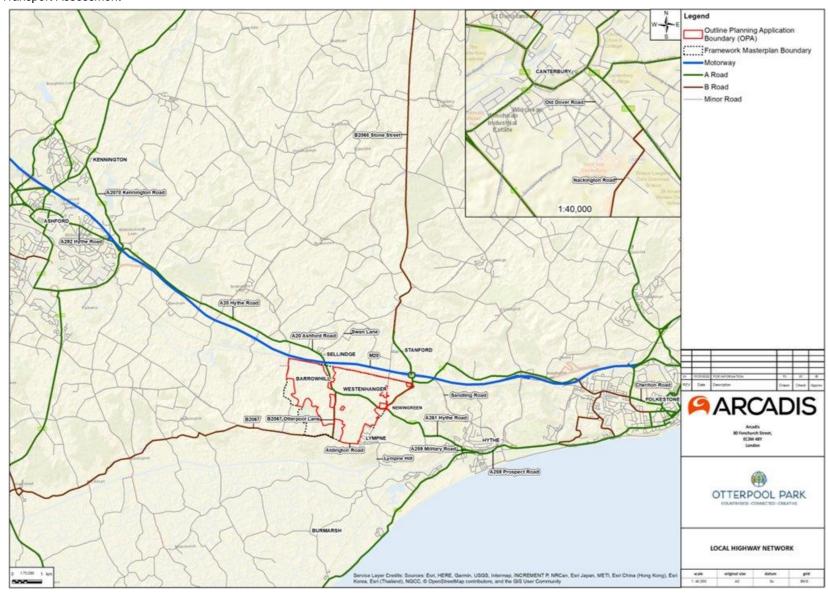


Figure 8 Local Highway Network

4.3 Baseline Traffic Flows

- 4.3.1 Traffic flow data from the following sources has been used in this assessment:
 - Folkestone & Hythe District Council survey data collected in the district in October 2016;
 - Corinthian Mountfield Ltd survey data collected in Canterbury in March 2014 and March 2018;
 - Arcadis survey data collected in June 2017; and
 - TRADS database survey data collected in October 2016 and June 2017.
- 4.3.2 The data collected in Canterbury in March 2014 was validated against data collected in March 2018, as described in the data validation report in Appendix C. The comparison indicated that there has been little change in traffic flows along Old Dover Road and Nackington Road between 2014 and 2018, with results indicating a net decrease in traffic demand of 3.4% and 5.7% in the AM and PM peak hours respectively. It was agreed with Kent County Council that the 2014 traffic data would be used to represent the 2018 baseline traffic flow for the two junctions in Canterbury included in the assessment.
- 4.3.3 The data collected in June 2017 was validated against the October 2016 data as described in the data validation report. The AM and PM peak network peak hours were observed to be 08:00 to 09:00 and 17:00 to 18:00, as described in the data validation reports in Appendix D. The 2017 data was growthed to 2018 to provide the baseline for assessment using TEMPro growth factors presented in Chapter 6. Table 4 presents AM and PM peak baseline flows on the key links within the study area.
- 4.3.4 Due to the Covid Pandemic that started in March 2019, there have not been opportunities to undertake any more recent traffic surveys. It was agreed with KCC that the data described above could be used as the baseline for this assessment.

Table 4 Summary of AM and PM Peak Hour 2018 Baseline Traffic Flows

	Number of Vehicles						
Link Name	А	M Peak Ho	ur	PM Peak Hour			
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	
B2067 Otterpool Lane	239	230	469	349	118	467	
A20 Ashford Road b/w Otterpool Lane & Newingreen	245	309	554	496	173	669	
A20 Ashford Road at Newingreen	231	398	629	523	197	720	
A20 Ashford Road b/w Newingreen & M20	723	659	1,382	712	692	1,404	
A20 Ashford Road at Barrow Hill	341	262	603	282	394	676	
Aldington Road b/w Otterpool Lane & Stone Street	86	139	225	140	97	237	
Stone Street	305	109	414	97	193	290	
B2067 Aldington Road west of Otterpool Lane	160	113	273	111	97	208	
Lympne Hill	240	119	359	90	248	338	
B2068 Stone Street	368	334	702	327	363	690	
M20 east of J11	2,432	2,116	4,548	2,062	2,608	4,670	
M20 west of J11	2,144	2,528	4,672	2,668	2,079	4,747	
Cheriton Road	562	343	905	597	342	939	

			Number o	of Vehicles		
Link Name	А	M Peak Ho	PM Peak Hour			
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way
A261 Hythe Road	280	328	608	484	244	728
A259 Military Road	1,076	-	1,076	1,019	-	1,019
A259 Prospect Road	849	496	1,345	800	731	1,531
Swan Lane	100	142	242	188	103	291
A20 Hythe Road west of Swan Lane	418	298	716	293	490	783
A2070 Kennington Road	776	393	1,169	456	631	1,087
A262 Hythe Road	353	348	701	563	400	963
A260 Spitfire Way	594	1,043	1,637	1,059	683	1,742
A260 Canterbury Road	479	1,566	2,045	811	1,245	2,056
Alkham Valley Road	1,080	227	1,307	1,055	125	1,180
Nackington Road	518	360	878	311	506	817
Old Dover Road	314	593	907	527	279	806

4.4 Baseline Highway Capacity

Summary of Results

- 4.4.1 Figure 2 presents the junctions within the study area that were agreed to be included within the capacity assessment. This section presents a summary of the results of the 2018 Baseline junction modelling for all existing junctions within the study area using the latest available software versions, Junctions 9 for the non-signalised junctions and LinSig 3.2.39.0 for signalised junctions. The modelling validation reports for Canterbury are contained in Appendix C and Appendix D contains the Survey Data Analysis Report. Appendix E presents baseline traffic flows through all existing junctions within the highway capacity assessment study area.
- 4.4.2 Table 5 presents a summary of the results of the highway capacity modelling for the existing junctions within the study area. The outputs from the modelling software are contained in Appendix F. The table presents the highest degree of saturation (DoS) or the maximum ratio of flow to capacity (RFC) on any arm of the junction.
- 4.4.3 DoS provides an indication of the level of spare capacity on a signalised lane. This is based on the total demand, lane saturation flow and green time available to the lane. Any value greater than 90% but within 100% is considered to be over practical capacity and any value above 100% is considered to be over theoretical capacity. Junctions using sophisticated methods of control such as MOVA or SCOOT can still operate efficiently with a DoS above 90%. RFC is the ratio of flow to capacity which is used for non-signalised junctions. The RFC provides a basis for judging the acceptability of junction designs and typically an RFC of less than 0.85 is considered to indicate satisfactory performance. It takes into account the geometric capacity, traffic demand and available gaps for traffic based upon opposing flow.
- 4.4.4 Junctions that operate over capacity, i.e., with a DoS above 90% or an RFC above 85%, in either the AM or PM peak hour, are highlighted red in Table 5. The results for all junctions are presented in more detail in Section 10.3.

Table 5 Summary of 2018 Baseline AM and PM Peak Hour Highway Capacity

l	an ID (Name	Maximum	DoS / RFC
Juncti	ion ID / Name	AM Peak	PM Peak
J1	M20 J10	84.5%	83.2%
J2	M20 J11	0.40	0.45
J3	Ashford Road (A20) / Swan Lane	0.40	0.29
J4	Ashford Road (A20) / Stone Hill	0.24	0.14
J5	Hythe Road (A20) / Station Road / Church Road	0.36	0.42
J6	Hythe Road (A20) / Meersham	0.31	0.20
J7a	A2070 Kennington Road / The Street	0.26	0.32
J7b	Hythe Road (A20) / The Street	0.68	0.56
J8	A20 Ashford Road / B2067 Otterpool Lane	47.4%	35%
J9	B2067 Otterpool Lane / Aldington Road	0.22	0.34
J10	Aldington Road / Stone Street	0.39	0.61
J11a	A20 Ashford Road / A261 Hythe Road	0.87	0.72
J11b	A20 Ashford Road / Stone Street	0.72	0.37
J12	Aldington Road / Lympne Hill	0.47	0.47
J13	A261 Hythe Road / Aldington Road	0.42	0.32
J14	A261 London Road / Barrack Hill	0.43	0.31
J15	A259 / Dymchurch Road / Military Road	81%	85%
J16	A259 Prospect Road / A259 East Road / Station Road / High Street	0.69	0.72
J17	A20 Ashford Road / A20 J11 off slip	0.56	0.34
J18	Ashford Road (A20) / Sandling Road	0.49	0.36
J19	M20 J11A	0.28	0.32
J20	M20 J12	0.55	0.47
J21a	M20 J13	0.51	0.51
J21b	M20 J13	0.48	0.51
J22	A20 Ashford Road / Stone Street	0.11	0.28
J23	M20 J9	75.3%	92.0%
J24	B2064 Cheriton High Street / B2063 Risborough Lane	77.0%	87.2%
J25	B2064 Cheriton High Street / A2034 Cherry Garden Avenue	91.0%	94.0%
J26	A259 Prospect Road / Stade Street	0.57	0.72
J27	Barrow Hill 1-way	53.4%	49.4%
SH18	A260 Spitfire Way / White Horse Hill / A20 Slip Roads	0.70	0.73
SH19	Alkham Valley Road / A20 slip roads	0.84	0.74
SH16	A260 Canterbury Road / Alkham Valley Road	0.61	0.46
J44	Nackington Road / Old Dover Road / St Lawrence Road / The Drive	99.4%	100.7%

4.5 M20 Freight Traffic Management

- 4.5.1 Freight parking at the Port of Dover is limited and demand can sometimes exceed capacity. Industrial action can also disrupt operations at the port. As a consequence, freight queues that cannot be accommodated at the port or Eurotunnel can form on the M20. On the M20 eastbound towards Eurotunnel and Dover, Junction 11 off-ramp sometimes has to be closed for safety reasons due to blocking back queues from Eurotunnel and occasionally Dover.
- 4.5.2 There are several traffic management measures in place on the M20 corridor, including Operation Brock. Lorry parks are also expected to be a long-term component of the operation of the Channel Crossing.

Operation Brock

- 4.5.3 Operation Brock is a management system design to keep Kent's roads open if there is disruption at the Port of Dover and Eurotunnel and includes a series of escalating traffic systems, the different phases of the system can be implanted depending on the scale of disruption. The overall plan includes:
 - A20 Dover TAP "Traffic Assessment Project" which is a queueing system that holds HGVs until space is available at the port.
 - M20 Moveable barrier physical concrete barrier that can be deployed between M20 junctions 8 and 9 to install a contraflow. HGVs heading for the Port of Dover or Eurotunnel will be held on the coastbound carriageway.
 - Manston Airfield This is an off-road site used to hold traffic bound for the Port of Dover and border readiness checks will be undertaken here to ensure the correct paperwork is in place.
 - Ashford Sevington inland border facility This is an off-road site next to M20 junction 10A and is likely to be used if the M20 contraflow approaches capacity.

A map of the Operation Brock traffic management sites is shown in Figure 9.

Lorry Parks

- 4.5.4 Further to the lorry park of Ashford Sevington inland border facility, the Phase 1 of the Waterbrook Park located south of the M20 junction 10 also in Ashford has now been completed.
- 4.5.5 In addition, the planning application for a 53 space 24-hour lorry park facility was approved at the end of August 2021. This will be located on the Lympne Industrial Estate which borders on the Otterpool Park development site in the south. It is not expected that this facility will generate an uplift of vehicles on the estate as a lorry wash business already exists on the site.

Figure 9 Map of Operation Brock Traffic Management Sites (Source – Department for Transport and Highways England)

4.6 Road Safety

Collision Analysis

- 4.6.1 Personal injury collision (PIC) data for the study area has been obtained from Kent County Council, supplied by Kent Police and has been analysed for the five-year period to the end of December 2019 to identify collision clusters, trends and potential opportunity for collision reduction. Any more recent data would be impacted by the Covid pandemic, therefore this data is considered to provide an appropriate basis for the assessment. A detailed analysis is reported in a technical note contained within Appendix G.
- 4.6.2 The total collisions in within the study area are shown in Figure 10. In total, 255 collisions occurred along the study area and these are highlighted by year and severity in the below Table 6.

Table 6 Total Collisions within Study Area by Year and Severity

Voor	Number of Collisions					
Year	Slight	Serious	Fatal	Total		
2015	47	8	1	56		
2016	48	12	2	62		
2017	45	11	1	57		
2018	33	12	1	46		
2019	25	9	0	34		
Total	198	52	5	255		



Figure 10 Total Collisions within Study Area

Collisions by Year and by Road Users

4.6.3 A summary of total collisions within the study area over the five-year period by year and road user is provided in Table 7. A total of 10 collisions resulted in injuries to pedestrians (4%), 11 collisions (4%) resulted in injuries to pedal cyclists and 39 collisions (15%) resulted in injuries to motorcyclists.

Table 7 Total Collisions within Study Area by Year and Road User

.,	Number of Collisions						
Year	Pedestrians	Cycle	P2W	Others (Cars, HGV's etc)	Total		
2015	3	3	9	41	56		
2016	2	2	12	46	62		
2017	2	3	9	43	57		
2018	1	3	5	37	46		
2019	2	0	4	28	34		
Total	10	11	39	195	255		

Collisions by Severity and by Road Users

4.6.4 A summary of total collisions within the study area over the five-year period by severity and road user is provided in Table 8. The majority of injuries sustained by road users involved in the collisions were of a slight severity.

Table 8 Total Collisions within Study Area by Severity and Road User

Year	Number of Collisions				
rear	Fatal	Serious	Slight	Total	
Pedestrian	1	3	6	10	
Cycle	0	2	9	11	
P2W	2	10	27	39	
Others	2	37	156	195	
Total	5	52	198	255	

Collisions by Route

4.6.5 The study area consisted of ten study routes and the number of collisions within those routes have been identified in Table 9.

Table 9 Total Collisions within Study Area by Route

Route	Number of Collisions for 5-year period up to end of 2019
A20 Barrow Hill, Ashford Road & Hythe Road	70
M20 Junction 9-Junction 11 (excluding Junction 10A) Corridor	85

Route	Number of Collisions for 5-year period up to end of 2019
A261 Hythe Road	11
A259 Dymchurch Road & Seabrook Road	31
B2067 Otterpool Lane	3
Aldington Road	1
Stone Street	8
A2070 Bad Munstereifel Road & Lacton Interchange	35
A292	2
B2068	3
Old Dover Road, Canterbury	6
Total	255

- 4.6.6 The majority of collisions occurred along the M20 Corridor (Junction 9 Junction 11 [excluding Junction 10A]) with 85 collisions (34% of total collisions).
- 4.6.7 This was followed by notable collision totals along A20 (Barrow Hill, Ashford Road & Hythe Road with 70 collisions 28% of total collisions), A2070 (Bad Munstereifel Road & Lacton Interchange with 35 collisions 14% of total collisions) and A259 (Dymchurch Road & Seabrook Road with 31 collisions 12% of total collisions).
- 4.6.8 Four out of five of the recorded fatal collisions occurred along the M20 motorway, while the majority of serious collisions (40) were split equally along the M20 and A20 respectively.
- 4.6.9 In terms of vulnerable road users, it can be seen that during the five-year period the highest number of pedestrian collisions (seven) occurred along the A259 carriageway, and that 19 motorcycle collisions along the A20 carriageway.
- 4.6.10 The highest number of collisions involving cyclist were also recorded along the A259 carriageway and totalled six collisions.

A20 Barrow Hill, Ashford Road and Hythe Road

4.6.11 As indicated in Table 9, 70 collisions occurred along the A20 Study Route which runs through the Otterpool Park development. The collisions by year and roads users are shown in Figure 10, and by year and severity in Figure 12. The locations of the incidents that occurred along A20 are presented in Figure 13. The number of PICs appear to be more frequent along the A20 between M20 Junction 11 and its junction with A261 Hythe Road. There are proposals as part of the Otterpool development to realign and improve the quality of this section of road and are described in Section 5.4.5.

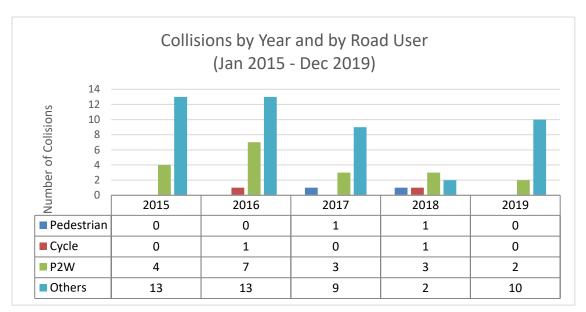


Figure 11 A20 Collisions by Year and by Road User

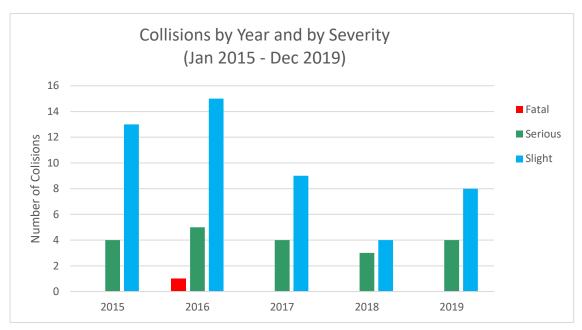


Figure 12 A20 Collisions by Year and by Severity

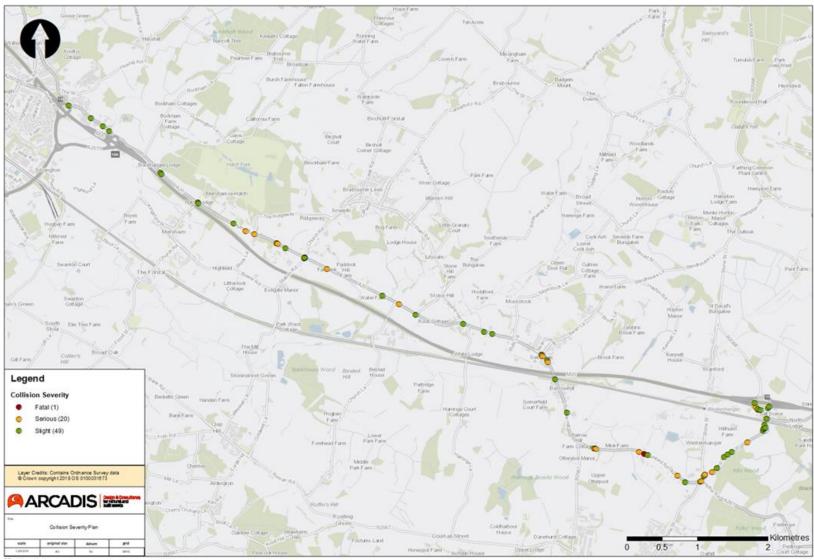


Figure 13 A20 Study Route Collisions

Road Safety Summary

- 4.6.12 Whilst all PICs are regrettable, the overall collision record in the entire study area over a fiveyear period does not give undue cause for concern. Based on the number and frequency of collisions at the location, it is considered that may be potential issues on the A20 Ashford Road on the section between the A261 Hythe Road north along the dualled section to M20 Junction 11. This section of road is due to be improved as part of the Otterpool Park development, this is described in Section 5.4.
- 4.6.13 As shown within Table 9, the collisions are spread across the network with these categorised into ten Study Routes.
- 4.6.14 Several accidents have occurred due to poor weather conditions. Aside from the above noted issues, the evidence does not suggest specific safety deficiencies on the local highway network in the vicinity of the development site.

4.7 Westenhanger Station Vehicle Parking

- 4.7.1 Westenhanger Rail Station represents the main generator of parking demand within the development site, which is predominantly rural and of a low parking demand. As such, a parking beat survey was undertaken on Thursday 19th April 2018 within school term time, to determine the current levels of associated parking at Westenhanger Rail Station. In agreement with Kent County Council, parking beats were carried out at three-hour intervals between 07:00, 10:00, 13:00, 16:00 and 19:00.
- 4.7.2 The parking within the areas surrounding the station is predominantly unmarked, unrestricted kerbside parking with a small provision (eight spaces) at the station car park. There is also an adjoining private car park comprising approximately 18 spaces serving a local Auctioneers. The parking survey included the following areas:
 - Westenhanger Station car park: hardstanding area directly to the east of the Westenhanger Station building:
 - Auctioneers private car park: hardstanding area directly to the west of the Westenhanger Station building;
 - Westenhanger Station access road: road linking the Westenhanger Station car park to Stone Street; and
 - Stone Street between Westenhanger Station car park access road and Meadow Court to the south.
- 4.7.3 The parking survey results and Photographs illustrating the surveyed conditions, are provided in Appendix H.
- 4.7.4 Table 10 presents the number of parking spaces at each location and the number of vehicles parked in the spaces at the time of each beat survey.

Table 10 Parking Beat Survey Results

Location	Number of Spaces	Number of Vehicles Parked by Time Period				
		07:00	10:00	13:00	16:00	19:00
Westenhanger Station car park unmarked, unrestricted	7	7	7	5	5	1
Westenhanger Station car park Blue Badge only	1	0	0	0	1	0
Auctioneers private car park private	18	2	3	4	3	1
Westenhanger Station access road unmarked, unrestricted	20	17	20	19	18	10
Stone Street unmarked, unrestricted	38	14	25	24	23	11
Total	84	40	55	52	50	12

4.7.5 The Westenhanger Station car park was found to have high parking utilisation (100%) during the AM periods with the car park fully occupied and just two spaces available throughout the daytime (71.4% stress levels), which lowered significantly at the final beat (see Photograph 13).

Photograph 13 Westenhanger Station Car Park

Photograph 14 Westenhanger Station Access Road

- 4.7.6 The Auctioneers private car park was observed to have low parking stress levels during the time of the surveys (daily average of 14.4%, approximately 3 spaces). The parking demand would be considerably higher during the day of an Auction.
- 4.7.7 The access road was observed to have high levels of parking stress (ranging between 85-100% for the three central beats), which typically make up a working day. Vehicles are shown to park along both sides of the carriageway (see Photograph 1). This is not adequate as two-way vehicle movements are obstructed by the parked vehicles.
- 4.7.8 There is no designated station parking on Stone Street, which experienced low to medium levels of parking demand throughout the day. The road is narrow and not supposed to be parked on. All vehicles shown to park on it, are inappropriate unless associated with the neighbouring housing.
- 4.7.9 In summary, the parking provision at the station is found to provide insufficient capacity to accommodate demand.

5 Proposed Development

5.1 Introduction

5.1.1 This Chapter sets out the quantum of proposed development assessed in each scenario for Otterpool Park and establishes the strategy for access and travel for the development. This has informed the Illustrative Masterplan and the Movement and Access Parameter Plans (Drawing OPM(P)1010L) and forms the basis of the assessment of impacts.

5.2 Development Quantum

- 5.2.1 The proposed development quantum and mix of land uses is such that the site will provide a sufficient scale and range of services that will meet the demands of the local population that means the need to travel long distances by non-sustainable modes of transport will be minimised, with a high level of contained trips. It is also anticipated that the services provided will not be of a type that will attract significant trips from people living external to Otterpool Park.
- 5.2.2 Table 11 to Table 13 represent the development schedules for each of the future year assessment scenarios based on the development schedules provided by the project team at the time of undertaking the assessment. This includes:
 - 2037 the scenario by the end of the emerging Core Strategy period;
 - 2044 8,500 homes scenario, the main assessment of the application, although recognising
 that this is planned to be complete by 2042, assessing the year 2044 provides a worst case
 assessment in terms of transport assessment for vehicles with the inclusion of two additional
 years of traffic growth; and
 - 2044 10,000 homes sensitivity assessment of Framework Masterplan.

Table 11 Otterpool Park Development Schedule (2037)

Land Use	Development Quantum					
	GIA (sqm)	Homes	Rooms	Schools		
C3 Residential		5,769				
C2 Extra Care Housing	20,930	328				
C1 Hotel	7,000		117			
B1 Commercial business in hubs	13,900					
B1 Commercial business park	15,625					
B2 Light Industrial business park	2,222					
A1 Retail	15,000					
A2 Business						
A3 Café / Restaurant	9,750					
A4 Pub / Takeaway						
D1 Secondary schools	10,050			1		
D1 Primary School	18,465			6		
D1 Nursery	3,150			9		
D1 Community Centre	5,800					
D1 Health	5,000					
D2 Sports pavilion	1,500					
D2 Indoor sports hall	3,250					

Land Use	Development Quantum					
	GIA (sqm)	Homes	Rooms	Schools		
		6,097				

Source: ES Appendix 4.4 Illustrative Accommodation Schedule

Table 12 Otterpool Park Development Schedule (2044 8.5k)

Land Use	Development Quantum					
	GIA (sqm)	Homes	Rooms	Schools		
C3 Residential		7,855				
C2 Extra Care Housing	41,708	645				
C1 Hotel	7,000		117			
B1 Commercial business in hubs	13,900					
B1 Commercial business park	50,460					
B2 Light Industrial business park	8,266					
A1 Retail	15,750					
A2 Business						
A3 Café / Restaurant	10,500					
A4 Pub / Takeaway						
D1 Secondary schools	20,100			2		
D1 Primary School	20,755			7		
D1 Nursery	4,200			12		
D1 Community Centre	6,300					
D1 Health	5,600					
D2 Sports pavilion	1,500					
D2 Indoor sports hall	5,250					
		8,500				

Source: ES Appendix 4.4 Illustrative Accommodation Schedule

Table 13 Otterpool Park Development Schedule (2044 10k)

Land Use	Development Quantum					
	GIA (sqm)	Homes	Rooms	Schools		
C3 Residential		8,704				
C2 Extra Care Housing	84,408	1,296				
C1 Hotel	7,000		117			
B1 Commercial business in hubs	13,900					
B1 Commercial business park	50,460					
B2 Light Industrial business park	8,266					
A1 Retail	15,750					

		Development Quantum				
Land Use	GIA (sqm)	Homes	Rooms	Schools		
A2 Business						
A3 Café / Restaurant	10,500					
A4 Pub / Takeaway						
D1 Secondary schools	20,100			2		
D1 Primary School	23,045			8		
D1 Nursery	4,550			13		
D1 Community Centre	6,300					
D1 Health	5,600					
D2 Sports pavilion	1,500					
D2 Indoor sports hall	5,250					
		10,000				

Source: ES Appendix 4.4 Illustrative Accommodation Schedule

5.3 Otterpool Park Transport Strategy

- 5.3.1 The full Transport Strategy can be found as the Environmental Statement Appendix 16.5, whilst this section provides a summary of this document.
- 5.3.2 Otterpool Park will be influenced by the travel needs of the existing and future communities. The aim is to strike the right balance between ensuring the Garden Town is a great place to live and work with all the amenities its population needs, while also providing easy connections to and from neighbouring communities. There will be a high proportion of local trips made within Otterpool Park as the development incorporates a range of schools, healthcare, community and sports facilities to meet as many of the needs of residents as possible and minimise travel to other locations. There will be local shopping and services and on-site employment locations together with the infrastructure for home working.
- 5.3.3 The Otterpool Park development and associated Transport Strategy will provide residents, employees and visitors with an attractive and comprehensive network of sustainable travel opportunities to provide viable alternatives to travel by private car. This will be balanced against ensuring that the highway access arrangements are robust enough to sustain additional traffic movements, provide connectivity to existing routes and allow the existing network to function within reasonable limits without causing significant issues for Otterpool Park and existing local residents.
- 5.3.4 As explained above, the Transport Assessment has been undertaken using the traditional approach, agreed with the highway authorities, of 'predict and provide' methodology derived from historic trip rate patterns. This results in a worst-case scenario for vehicle trips generated by the development, and the Assessment provides confidence that even in this scenario there are appropriate highway infrastructure proposals that can mitigate the effects. Nevertheless, this is not the desired approach for the development.
- 5.3.5 The Transport Strategy has been introduced to provide more progressive mobility interventions for Otterpool Park. The future of travel and the movement of goods is changing. With the advances to technology, changes to the way we work and a shift in the way we access services and buy goods are influencing the way we travel. The vision is to promote sustainable and active travel modes through the offer at Otterpool Park such that the need for long distance travel and reliance on the private vehicle is reduced. This is consistent with the Folkestone and Hythe District Council's aim to achieve the net-zero emissions target by 2030 and the

Government's Ten Point Plan for a Green Industrial Revolution, of which Point Five is Green public transport, cycling and walking.

- 5.3.6 The Transport Strategy for Otterpool Park is founded on the following principles:
 - · Create walkable neighbourhoods and a high street highly accessible by walking and cycling
 - Provide strong walking, cycling and bus connections to rail station, employment, high street, local centres and schools from residential areas
 - Provide wider connectivity by walking, cycling and bridleways into surrounding countryside and existing communities
 - Ensure a high level of connectivity to and from Otterpool Park within the sub-region by frequent high-quality public transport
 - Minimise and manage the impacts of traffic on existing road network particularly through existing communities and other sensitive areas
 - Provide appropriate levels of parking for cars and bicycles
 - Implement a range of sustainable travel behavioral measures to encourage use of sustainable modes
 - Provide for future needs for electric vehicles and flexibility to adapt to innovative future mobility solutions
 - Reduce the need to travel by providing relevant on-site facilities.
- 5.3.7 There will be a high proportion of local trips made within Otterpool Park as the development incorporates a range of schools, healthcare, community and sports facilities to meet as many of the needs of residents as possible and will minimise the need to travel to other locations. There will be local shopping and services and on-site employment locations together with the infrastructure for home working.
- 5.3.8 A user-centric approach has been adopted as part of the Future Mobility plan for the development. The principles of this approach are to put the mobility needs of the users first and is described further in Chapter 12.
- 5.3.9 The outcomes from the user-centric approach have allowed for some ambitious Mode Share targets to be derived. These would be supported by the comprehensive range of transport measures proposed at the development:
 - Walking and Cycling Strategy providing a highly connective and permeable network of routes both within the development and also to link to the wider area of existing footpaths and bridleways.
 - Bus Service Enhancements providing high-quality bus infrastructure that will make this travel mode an attractive option for short and longer journeys.
 - Rail Enhancements Improvements to the Westenhanger Rail Station and supporting proposals of future High-Speed services (subject to wider deliverability) at the Station as outlined in Kent's Rail Strategy 2021.
 - Shared Mobility Schemes Provision of bike and scooter share schemes, including electric
 options. Car club provision will offer development users who do not require a car on a regular
 basis the option to drive without the high cost and long-term maintenance associated with
 the private car.
 - Mobility Hubs facilities that integrate shared, active and public transport modes in one location as well as bringing opportunities create attractive places.
 - MaaS (Mobility as a Service) a single digital application to enable users to plan, book and pay for multiple types of mobility, with a single payment channel instead of multiple ticketing and payment operations.
 - Healthy Streets Approach promoting healthy lifestyle through active travel, sustainable choices, safety and connectivity.

Otterpool Park

Transport Assessment

- Parking Strategy achieving an appropriate balance of parking for overall requirements of the development that accommodates parking but does not unduly encourage car ownership and use.
- EV Strategy a bespoke EV charging point strategy for each phase of the development to be developed to support electric charging network and emerging technology.
- Delivery and Servicing Strategy consider how to utilise emerging technologies and deliver a sustainable and efficient freight system that is fit for the future.
- 5.3.10 These measures will be balanced against ensuring that the highway access arrangements are robust enough to sustain additional traffic movements, provide connectivity to existing routes and allow the existing network to function within reasonable limits without causing congestion and accessibility issues for Otterpool Park and existing local residents.
- 5.3.11 The Otterpool Park development and associated transport strategies will provide residents, employees and visitors with an attractive and comprehensive network of sustainable travel opportunities to provide viable alternatives to travel by private car. The Transport Strategy proposals are summarised in Figure 14.
- 5.3.12 The proposed approach at Otterpool Park is to go beyond existing policy requirements and it is intended that the worst-case vehicle trip generation scenario forecast in the Transport Assessment will not be reached, because site users will opt to travel using the sustainable alternative modes offered by the development instead.
- 5.3.13 The infrastructure of the Masterplan will be complemented by bespoke green travel measures, which will build on the opportunities offered by the existing and proposed walking, cycling, equestrian and public transport infrastructure, and promote and develop sustainable travel opportunities as well as support low emissions vehicles and innovative transport solutions.

Otterpool Park - The new Garden Town will be Otterpool Park - Transport Strategy - will provide Transport Strategy enriched with green spaces that create plentiful residents, employees and visitors with an attractive and Principles opportunities to walk, play, explore and socialise. comprehensive network of sustainable travel opportunities to Walkable neighbourhoods provide viable alternatives to travel by private car. Sustainable Mode Connectivity to site facilities Wider connectivity to Cycle Parking surrounding communities External public transport Enhancements connectivity Minimise and manage the impacts of traffic on existing road appropriate levels of parking for cars and bicycles a range of sustainable travel behavioural measures future needs for electric vehicles innovative future mobility Enhancements Transport Strategy Outcomes **Environmental Outcomes** Potential 31% reduction of CO2 based on reduction of daily vehicle trips generated by the site Shared Mobility achieving Best Case Mode Share Schemes Highway scenario (User Centric Approach) **Enhancements** compared to TA approach (worst case for vehicles). Social and Economic Outcomes Should the Best Case scenario be achieved, this would reduce the effects of climate change, leading Mobility Hubs to economic cost to society, health Delivery and Servicing Strategy and wellbeing benefits for individuals, such as leading longer healthier lives and reducing the 0 burden on the taxpayer by reducing a Service visits to healthcare services.

Figure 14 Integrated Transport Strategy

5.4 Enabling Infrastructure

5.4.1 The proposals for facilitating the infrastructure off-site of the Otterpool Park development in walking, cycling and highway access are summarised below.

Off-site Walking and Cycling Strategy

- 5.4.2 The off-site Walking and Cycling Strategy will improve connectivity between Otterpool Park and the wider network. The priorities for improvement proposed that would benefit the future users of the Otterpool Park development have been identified as follows:
 - HE/359 and HE371footpath Improve the connection to Public Right of Way (PRoW) and cycle network from Westenhanger Station to the north.
 - HE/281 footpath Improvements to the route between Stone Street and heading south east through Sandling Park towards Hythe and Saltwood.
 - HE/293 footpath links to the proposed pedestrian network and connects eastwards to Hythe.
 - HE/343 byway Improving this link will make it more attractive as a pedestrian and cycle route to Hythe.
 - Aldington Road between Otterpool Lane and Stone Street improvements to the pedestrian provision such as formalised crossing points and consideration for traffic calming measures close to key pedestrian desire lines.
 - Harringe Lane proposal to close this road for vehicle traffic halfway down the road. This
 will prevent any through traffic generated by the development and create a more attractive
 route for walking and cycling in the north south direction.
- 5.4.3 The PRoW routes are intended to be provided primarily as leisure routes, although a small number of users may consider these as a commuting route.
- 5.4.4 The nature of the improvements is part of an ongoing dialogue and connections will be supported through the likely provision of contributions to off-site sustainable transport improvements. However, this will be secured and detailed within the supporting Section 106 legal agreement following planning submission. The proposed walking and cycling routes through the development and also connecting to the wider surrounding area are shown in Figure 15.

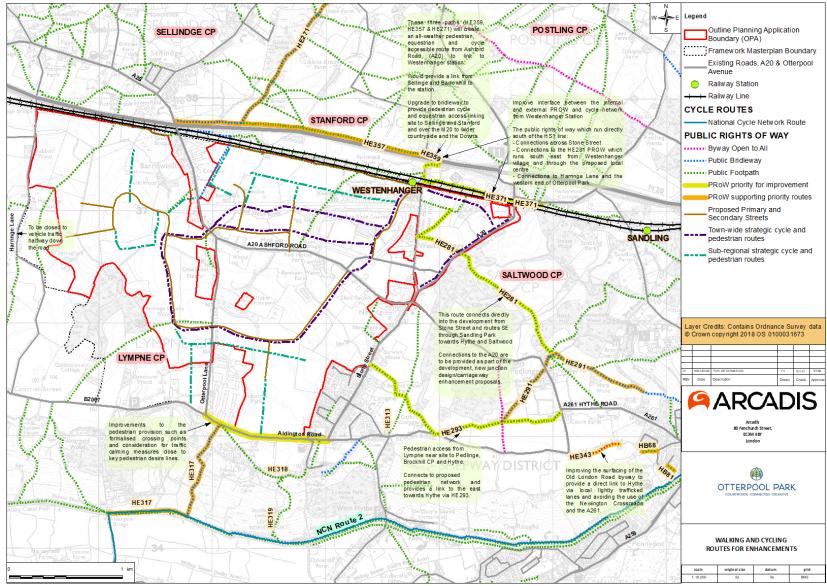


Figure 15 Walking and Cycling Strategy Map

Highway Access Strategy

5.4.5 The highway access strategy is based on the main access to Otterpool Park being from Junction 11 of the M20 via the A20. It is recognised that traffic will also use other routes. However, through upgrading the route from Junction 11 and thus providing high quality linkages, traffic impacts on other routes will be minimised. Furthermore, the approach is to mitigate impacts on the network but not to provide significant capacity increases elsewhere that encourage car use or the use of more sensitive routes.

Newingreen Junction

5.4.6 At the southern end of the A20, there is a proposal to merge the existing A20 Ashford Road priority junctions with Stone Street and Hythe Road into one signalised junction, to be known as Newingreen junction. The mitigation is designed to address the potential impacts and mitigate the predicted delays at this location. The layout of the proposed junction is shown in Drawing number OP-ARC-XXX-DR-T-0007 (Appendix I). The options considered and the design process for the Newingreen Junction is set out in a Technical Note found in Appendix J.

Upgrade of the A20 Ashford Road

- 5.4.7 The A20 Ashford Road is currently dual carriageway to the south of the motorway junction for a distance of approximately 300 metres. Along this dual carriageway section, to the south of the M20 junction there is an at grade Give Way junction for the A20 Ashford Road. This is a restricted access junction providing for left in and left out movements with Ashford Road to and from the southbound carriageway. A roundabout junction to the south provides for vehicles to make a U-Turn movement and return north to the motorway junction.
- 5.4.8 South of the roundabout junction, the A20 is single carriageway for around 1,100 metres to a point 145 metres to the north of the Newingreen junction where it is a dual carriageway with a hatched out wide northbound one lane carriageway and a southbound two-lane carriageway. The single carriageway route varies in width, with a section where it is less than 6.5m wide where it traverses through the wooded area to the north of Stone Street (a distance of approximately 700 metres). The existing geometry and road safety performance appear to be below standard in this section.
- 5.4.9 In relation to existing capacity, as a guide, the Design Manual for Roads and Bridges gives an annual average daily traffic flow (AADT) for this is type of road (Rural S2 road) as up to 13,000 vehicles (TA 46/97⁴ paragraph 2.4 & Table 2.1).
- 5.4.10 Table 14 sets out the peak hour and AADT flows from a 2016 DfT survey, the 2018 baseline situation and indicative forecasts without (DM) and with (DS) Otterpool Park development of 8,500 homes (2044 assessment year). The forecast method to derive peak hour background flows is described in Chapter 6, while Chapters 7 to 9 describe the method for calculating Otterpool Park traffic flows. Daily totals have been derived from peak hour flows by considering existing peak hour to daily flow conversion factors.

⁴ This document was withdrawn from the Design Manual for Roads and Bridges (DMRB) in March 2020, however, to maintain consistency with prior assessment on this stretch of road and in the absence of any replacement DMRB guidance the withdrawn standards have been used for the purposes of this report as they still provide useful guidance on link capacity.

Table 14 A20 Ashford Road Base and Future Year Traffic Flows

	Number of Vehicles								
Assessment Year	А	M Peak Ho	ur	Р	AADT				
	NB	SB	Total	NB	SB	Total	Total		
2016 Survey	-	-	-	-	-	-	13,720*		
2018 Base Year	762	664	1,426	700	746	1,446	18,061		
2044 8.5k DM	1,066	1,092	2,158	1,039	1,232	2,271	27,852		
2044 8.5k DS	2,200	1,440	3,640	1,655	2,065	3,718	46,272		
2044 10k DM	1,067	1,087	2,144	1,025	1,214	2,239	27,563		
2044 10k DS	2,177	1,433	3,610	1,648	2,040	3,688	45,894		

^{*} DfT AADF counter

- 5.4.11 Based on the 2016 and 2018 AADT totals, the A20 appears to already be operating above the typical daily flow capacity of 13,000 for a rural road of this current character. The expected future increases in traffic without development will exacerbate capacity issues on this link. The future year DS scenarios that include Otterpool Park development traffic would require the A20 to accommodate a daily flow of 46,272 vehicles for the application scheme. In conclusion, the existing link is not anticipated to have sufficient capacity to deal with the level of future traffic even without Otterpool Park.
- 5.4.12 Design discussions have taken place with Kent County Council and Folkestone & Hythe District Council as to the future character of the link between the roundabout south of the M20 junction and Newingreen junction. Given the requirement to provide two access junctions into the development from the new link road (Otterpool Avenue) and the changing nature of the land uses to the west of the A20 that would form the development, it has been agreed with Kent County Council and Folkestone & Hythe District Council that the A20 would most appropriately become an urban road with a 40mph speed limit. There has also been the need to minimise land requirements for road infrastructure.
- 5.4.13 The traffic capacity of urban roads is identified in the Design Manual for Roads and Bridges (DMRB) Vol 5.1 TA 79/99⁵ road types. It is considered that in future the A20 in this location would be a UAP1 road which is categorised as a 'High standard single or dual carriageway carrying predominately through traffic with limited access and a 40 to 60mph speed limit'.⁶
- 5.4.14 The busiest direction capacity of a 7.3mm wide UPA1 single carriageway road is identified in TA 79/99 as 1,590 peak hour vehicles in one direction and a 2,650 two-way flow. The forecast flows With Development in the Table 14 above show that this would not provide sufficient capacity.
- 5.4.15 The capacity of a dual carriageway (i.e. two 7.3m wide carriageways) UAP1 road is 3,600 vehicles in each direction and a 7,200 two-way flow. The forecast flows With Development (DS) in Table 14 above show that this should provide sufficient capacity.
- 5.4.16 The A20 link between the roundabout south of the M20 J11 and north of the Newingreen junction is proposed to be improved as a single carriageway road of 40mph speed limit, this will be undertaken prior to the first occupation of the site. Drawing 10029956-ARC-XX-XX-DR-HE-0025 contained in Appendix I shows the proposed A20 improved alignment plan. The new safer route will balance the need to accommodate future traffic with minimising the impacts. The monitor and manage approach

⁵ This document was withdrawn from the Design Manual for Roads and Bridges (DMRB) in March 2020, however, to maintain consistency with prior assessment on this stretch of road and in the absence of any replacement DMRB guidance the withdrawn standards have been used for the purposes of this report as they still provide useful guidance on link capacity.

⁶ http://www.dft.gov.uk/ha/standards/dmrb/vol5/section1/ta7999.pdf

- will determine whether a further upgrade to an urban dual carriageway is required. With the implementation of the Transport Strategy, it is expected that the estimated traffic generated by the site proposed in the Transport Assessment will not be reached, and hence the dualling option may not be required.
- 5.4.17 As part of the upgrade to the A20 between the Otterpool Avenue and the M20 J11, a significant improvement is proposed for pedestrians to mitigate the expected increase in traffic flow along the A20 at this location. A signalised pedestrian crossing is proposed at the A20/Otterpool Avenue junction and the A20/Business Park access junction to facilitate the connection to HE/281 to the south. With the implementation of the development, there is the option to divert the existing HE/281where it lies within the site to follow the proposed Stone Street and Otterpool Avenue to reach the A20. The signalised pedestrian crossing facilities on the Business Park arm of the access junction to the Business Park as well as across Otterpool Avenue where these two junctions meet the A20 would provide safe passage to the HE/281 to the south. Where the existing A20 is not used as part of the new alignment, it will be retained for pedestrian use to allow connectivity with footpath HE/281 and will form part of the landscape buffer. This will connect the two signalised pedestrian crossings to the east of the A20 to the footpath HE/281, this arrangement is also shown on Drawing 10029956-ARC-XX-XX-DR-HE-0025 contained in Appendix I.
- 5.4.18 However, if required, the dual layout is also proposed to be provided west of the existing route in the southern section, and in the northern section the existing alignment would be realigned and widened to the west of the existing route as appropriate. And again, where the existing A20 is not used as part of the new alignment, it will be retained for pedestrian use to allow connectivity with footpath HE/281 and will form part of the landscape buffer.
- 5.4.19 It is expected that the monitor and manage approach would be facilitated by the implementation of traffic counting technology to monitor traffic levels around the development as it is built out. This data can then be used to derive the actual trips generated by the development which can be compared with the values reported in this TA.

Otterpool Avenue

- 5.4.20 Otterpool Avenue is proposed to serve the development and provide a route for the A20 east-west traffic effectively bypassing the existing Newingreen junction. The new route is proposed as a single carriageway 20mph strategic route with a segregated footway and cycleway alongside. Stone Street will be connected to the new link via a cross road priority junction but there will be no through route to the station or to the Newingreen junction, ensuring Stone Street serves as a quiet access to properties. A new crossroads with traffic signals would be provided to give access to the town centre and railway station to the north, and development to the south.
- 5.4.21 On the section of the existing A20 from Newingreen junction westwards it is envisaged the speed limit of Ashford Road west of Newingreen would be reduced from 40mph to 30mph. This complements the proposed 20mph Otterpool Avenue speed limit and is likely to enhance road safety. In addition, this will enhance noise and air quality aspects for residents in the vicinity and fit the proposed highway environment which includes a number of proposed junctions, better walking and cycling connectivity and more direct frontages.
- 5.4.22 There will be a phased approach to any speed limit reductions along the A20 prior to development along the A20 corridor coming forward. It is proposed that speed limits will be reduced appropriately when some development comes forward along with any segregated footway / cycleways that are implemented.

6 Future Baseline Highway Conditions

6.1 Introduction

- 6.1.1 In order to undertake impact assessments for the required future assessment years, it is necessary to establish the expected changes to background traffic volumes and the highway network for the assessment years.
- 6.1.2 This Chapter describes the agreed method with Kent County Council and Highways England (now NH) for forecasting background traffic growth to the assessment years of 2037 and 2044. It also describes the changes to the highway network that are expected to influence traffic volumes, as advised by Kent County Council and Highways England (now NH).

6.2 Background Traffic Forecasting

Introduction

- 6.2.1 Since detailed information of the scale, type and location of new development within the study area between 2018 and the assessment years of 2037 and 2044 is not available at this stage, it was agreed during scoping with Kent County Council and Highways England (now NH) that the primary method for forecasting future traffic growth should be the application of growth factors derived from TEMPro, a program that provides projections of the total number of trips in an area over time based on the forecast number of households and jobs for use in local and regional transport models.
- 6.2.2 In addition to the use of TEMPro, specific developments for which traffic generation and routing assumptions were available are included in the assessment separately and heavy goods vehicle (HGV) traffic growth on the M20 was calculated using national freight traffic growth data.
- 6.2.3 The following sections describe the application of this method in detail.

Committed/Planned Developments

- 6.2.4 This section provides an overview of the committed or planned developments which have been included within the assessment, for which traffic generation and routing information was available. The following developments have been included in this way, as requested by Kent County Council:
 - Former Rotunda Amusement Park, Marine Parade, Folkestone;
 - Shorncliffe Garrison, Folkestone;
 - Street Record, Hurricane Way, Hawkinge;
 - Philbeach House, Tanners Hill, Hythe;
 - Land Rear Rhodes House, Sellindge;
 - Remainder of land at Aerodrome, Hawkinge;
 - Nickolls Quarry, Dymchurch Road, Hythe;
 - Land adjacent The Surgery, Sellindge;
 - Land at Hurricane Way, Hawkinge;
 - · Land at Cheesemans Green, Kingsnorth;
 - Land at Chilmington Green, Ashford Road;
 - Former Rowcroft and Templer Barracks, Ashford;
 - Waterbrook:
 - Land at Willesborough Lees;
 - Eureka Park;
 - Court Lodge Farm;
 - Former Newton Works;

- · Former Powergen Site, Ashford;
- · Conningbrook, Willesborough;
- Plot 1, Hurricane Way, Hawkinge; and
- Land north-east of Willesborough Road, Kennington.
- · Mountfield Park, South Canterbury.
- 6.2.5 Traffic volume and routing information related to these developments in provided in Appendix K.

Former Rotunda Amusement Park, Folkestone, Kent

6.2.6 A planning application (Planning Ref. Y12/0897/SH), approved in September 2018 and reserved matters approval in January 2019, for the proposed mixed-use development comprising 1000 homes and up to 10,000 square metre commercial floorspace including A1, A3, A4, A5, B1, D1 and D2 uses. Works commenced in 2020 with occupations anticipated to commence from 2021, later than projected in the application Transport Assessment.

Shorncliffe Garrison, Folkestone, Kent

6.2.7 A planning application (Planning Ref. Y14/0300/SH), approved in December 2015, for the proposed mixed-use development comprising 1200 homes and up to 10,000 square metre commercial floorspace including business, retail and commercial uses. The Transport Assessment associated with the planning application anticipated occupation of the site by 2026.

Street Record, Hurricane Way, Hawkinge, Kent

6.2.8 A planning application (Planning Ref. Y14/0341/SH), approved in July 2015, for the proposed development of 21 residential units. While there was no Transport Assessment available, the site appears to be occupied and completed therefore we have assumed built out by 2020.

Philbeach House, Tanners Hill, Hythe, Kent

6.2.9 A planning application (Planning Ref. Y15/0720/SH), approved in May 2015, for a residential development of 84 units. The Transport Assessment associated with the planning application anticipated occupation of the site by 2020.

Land Rear Rhodes House, Sellindge, Kent

6.2.10 An outline planning application (Planning Ref. Y16/1122/SH) with consent granted in January 2019 and Reserved matter approval validated in February 2021, for the proposed mixed-use development comprising 162 homes (including affordable, self-build and retirement housing) and up to 929 square metre B1 business floorspace equivalent to 77 jobs (full time). The Transport Assessment accompanying the application forecast development traffic for a future year of 2022.

Remainder of land at Aerodrome, Hawkinge, Kent

6.2.11 A planning application (Planning Ref. Y15/0030/SH), approved in March 2018, for the remaining 176 residential units. Given no information was available regarding years of completion, build out of 76 units was assumed by 2022, with the remaining 100 units completed by 2030.

Nickolls Quarry, Dymchurch Road, Hythe, Kent

6.2.12 A planning application (Planning Ref. Y06/1079/SH), approves in June 2013 and Reserved Matter Approval validated in May 2020, for the mixed-use development comprising 1,050 homes) and up to 15,000 square metre employment floorspace. While the most recent Transport Assessment takes 2014 as the year of full occupation, only a small proportion of the site appears to have been built out thus far, therefore we have assumed full build-out to occur by 2030.

Land Adjacent The Surgery, Sellindge, Kent

6.2.13 Reserved matters approval granted January 2016, for the Hybrid application (Planning Ref. Y14/0873/SH) comprising the redevelopment of land between the A20 and M20 at Sellindge for the construction of 250 homes at the time of undertaking assessment. It was updated from 250 to 240 homes as per HLS update in January 2021. The indicative build programme within the Transport Assessment proposes a full build-out anticipated for 2019/20.

Land at Hurricane Way, Hawkinge, Kent

6.2.14 A planning application (Planning Ref. Y14/0336/SH) for the proposed retirement development comprising 61 cottages and 50 apartments. It has been updated from 111 at the time of undertaking assessment to 121 as per HLS update in January 2021. The development appears to be approximately 65% complete, for the purposes of this assessment a full build-out by 2022 has been assumed. The increase of 10 dwellings at this development is unlikely to make a significant impact to the overall traffic assessment.

Land at Cheesemans Green, Kingsnorth, Kent

6.2.15 A planning application (Planning Ref. 15/01586/AS) for the mixed-use development comprising 1,167 homes and up to 70,000 square metre B1 business floorspace. Under advice from KCC, we have assumed a build-out rate of 50 residential units per year, as well as a proportionate build out of the employment land uses, resulting in full build-out occurring in 2037.

Land at Chilmington Green, Ashford, Kent

6.2.16 A planning application (Planning Ref. 12/00400/AS), approved in January 2017, for the mixed-use development comprising 5,750 homes and up to 10,000 square metre B1 business floorspace. Under advice from KCC, we have assumed a reduced build-out rate compared to that assumed in the Transport Assessment, with full build-out of the development not occurring by 2044, the final assessment year for the Otterpool Park development.

Former Rowcroft and Templer Barracks, Ashford, Kent

6.2.17 A planning application (Planning Ref. 02/01565/AS), approved in October 2007 with Latest Decision Notice issued for S106 sixth deed of variation May 2013, for the mixed-use development comprising 1,250 homes and up to 12,077 square metre employment floorspace, as well as retail, social and educational land uses. The development appears to have been substantially completed, and full build-out has been assumed by 2022.

Waterbrook, Ashford, Kent

6.2.18 A planning application (Planning Ref. 12/00400/AS) for the mixed-use development comprising 400 residential units and up to 24,474 square metre B1 business floorspace, as well as a number of retail and sui generis land uses. Under advice from KCC, we have assumed a reduced build-out rate compared to that assumed in the Transport Assessment, with full build-out of the development occurring by 2030.

Land at Willesborough Lees, Ashford, Kent

6.2.19 Full planning was granted March 2018 (Planning Ref. 16/01722/AS) for a new link road to the rear of William Harvey Hospital from the A20 and 207 homes at the time of undertaking assessment. It received approval since the 2019, with 192 dwellings, located in Ashford. The supporting Transport Assessment included a 2021 future year.

Eureka Park, Ashford, Kent

6.2.20 A proposed development is currently being scoped for planning permission on an allocated local plan site, comprising 375 residential units and significant employment land. Under advice from KCC, we have assumed full build-out to occur by 2030.

Court Lodge Farm, Ashford, Kent

6.2.21 A planning application (Planning Ref. 18/01822/AS) for the mixed-use development comprising 950 homes and new retail and employment land uses. The supporting Transport Assessment assumes full build-out by 2030.

Former Newton Works, Ashford, Kent

6.2.22 A planning application (Planning Ref. 19/01476/AS), granted in September 2020, for the mixed-use development comprising 303 residential units, a hotel including 62 serviced apartments, film and TV studios as well as a range of retail and commercial land uses. The Transport Assessment associated with the planning application indicates full build-out by 2030.

Former Powergen Site, Ashford, Kent

6.2.23 A planning application (Planning Ref. 15/01671/AS) for the residential development comprising 600 residential units as well as associated works. At the time of undertaking assessment, the application proposed 600 dwellings. It received approval since then, with a total of 674 dwellings. While the Transport Assessment considered a final year of 2020 for build-out, works appear to have not been completed, therefore a final build-out year of 2022 has been assumed. The change in dwellings at this development is unlikely to make a significant impact on the overall traffic assessment.

Conningbrook, Willesborough, Kent

6.2.24 A planning application (Planning Ref. 12/01245/AS), approved in October 2014 with Section 106 Agreement signed in December 2016, for the mixed-use development comprising 300 residential units as well as leisure and retail uses. While the Transport Assessment considered a final year of 2017 for build-out, works appear to have not been completed, therefore a final build-out year of 2022 has been assumed.

Plot 1 Hurricane Way, Hawkinge, Kent

6.2.25 A planning application (Planning Ref. Y15/1035/SH), approved in April 2016, for the mixed-use development comprising 47 residential units as well as 1,800 square metres of B1 employment and a food retail unit at the time of undertakiing the assessment, this was updated to 2366 square metres of commercial space (Class B1/B8). This site appears to have been fully built-out by 2019. The change in quantum at this development is unlikely to make a significant impact on the overall traffic assessment.

Land North-East of Willesborough Road, Kennington, Kent

6.2.26 A planning application (Planning Ref. 19/00025/AS) for the mixed-use development comprising 750 residential units as well as 915 square metres of B1 employment a number of other land uses including a primary school at the time of undertaking assessment. It updated to 700 residential units and a Primary school on 40 ha site. The Transport Assessment indicates that full build-out is planned by 2030.

Mountfield Park, South Canterbury

6.2.27 A planning application pending decision was submitted March 2016 for the proposed South Canterbury urban extension, for up to 4,000 homes and 70,000 square metre commercial floorspace which is equivalent to 5,833 jobs (full time), on land north and south of New Dover Road, Canterbury (Planning Ref. CA/16/00600). The supporting Transport Assessment has assessed a 2031 future year assessment, when the development is anticipated to be fully built out and occupied.

Permitted Waste Facility within the proposed development site

- 6.2.28 There is an existing planning permission for the Permitted Waste Facility (PWF) (planning reference SH/08/124) to be located on the west of the development application site. In the scenario that the permitted waste facility is delivered, a 250m buffer around the permitted waste facility where no Otterpool Park built development would be provided is assumed. This is considered to be a sensible, appropriate buffer to assume in order to ensure that the future Otterpool Park development wouldn't hinder the operation of the waste facility in line with the 'Agent of Change' principle. When a 250m buffer is drawn onto the illustrative masterplan, the resulting impact would be the loss of approximately 800 residential units and a primary school.
- 6.2.29 The PWF development proposals include:
 - A facility that will manage co-mingled recyclable materials from commercial and industrial producers. The enclosed plant will also have the capacity to deal with possible future waste streams from municipal sources;
 - An anaerobic digestion (AD) plant that will be in the form of an enclosed building housing waste reception and feedstock preparation areas, with the digestion tank and gas utilisation plant alongside;
 - An external maturation pad for storing saleable product from the AD plant; and
 - Associated office, mess and weighbridge facilities.

TEMPro Growth Factors

Household and employment forecasts

- 6.2.30 TEMPro utilises forecast household and employment numbers within local districts to forecast traffic growth on the network on a district-wide basis. To calculate growth between a base assessment year and a future assessment year, the software calculates the forecast increase in the number of homes and jobs between the two years and applies trip rates to determine the corresponding expected increase in trips the increase in the number of homes and jobs would generate. The increase is represented by a growth rate that can be applied to base year traffic flow information to generate the expected future year traffic flows.
- 6.2.31 Different growth rates are generated for different classes of road and are generated on a district-or regional-wide scale. Thus, this method of forecasting applies uniform growth across a region and does not take into account localised growth that would occur most prominently around the immediate vicinity of where a development is located.
- 6.2.32 Highways England (now NH) advised that the household and employment figures contained in TEMPro v7.2 are incomplete and should be updated with forecasts consistent with the development requirements of the relevant local authorities in order to reflect anticipated traffic growth.
- 6.2.33 Following consultation with Kent County Council and Folkestone & Hythe District Council, most recent housing and job forecasts were obtained for the three areas within the assessment study area; Ashford, Folkestone & Hythe and Canterbury. Table 15 presents the forecast information provided for each assessment year.

Table 15 Forecast Household and Job Numbers for Ashford, Folkestone & Hythe and Canterbury by Year

Year	Ash	ord	Folkstone	& Hythe	Canterbury		
	Households	Jobs	Households	Jobs	Households	Jobs	
2017	54,023	62,736	52,311	48,530		73,060	
2018	54,600	62,783	52,800	48,860	69,700	72,465	
2037	73,934	68,806	66,949	55,130	86,756	77,811	

Year	Ash	ford	Folkstone	e & Hythe	Canterbury		
Teal	Households	Jobs	Households	Jobs	Households	Jobs	
2044	80,150	71,186	71,695	57,440	92,356	80,432	

Application of the household and employment forecasts within TEMPro

- 6.2.34 The use of housing and employment forecasts in this way within TEMPro is intended to provide an indication of the likely growth in traffic on the network across the corresponding regions based on the local authorities meeting their housing and job requirements. For Ashford, Folkestone & Hythe and Canterbury, this requires yearly housing completion rates of 967, 718 and 877 houses per year respectively for 28 consecutive years between 2018 and 2044.
- 6.2.35 These housing and job forecasts include those that will be provided by already committed developments, including the developments described earlier in this section. As described above, this Transport Assessment takes account of the traffic growth forecast for the committed developments by applying the traffic flow volume and routing information available within the relevant planning applications. Inclusion of traffic from those developments in this way removes the need to forecast traffic growth for these developments within TEMPro. The number of houses and jobs provided by these developments, as detailed in the corresponding planning applications, was therefore deducted from the forecasts in Table 15 according to the location of the developments before the totals were input the TEMPro software.
- 6.2.36 Since the forecasts for Folkestone & Hythe in Table 15 would include growth that is proposed to be delivered by Otterpool Park, the number of houses and jobs that would be provided by Otterpool Park must also be deducted from the Folkestone & Hythe forecasts for any assessment scenario for which traffic generated by Otterpool Park, as described in Chapter 9, is added. This is the case for all DS scenarios.
- 6.2.37 For the DM scenarios, it could be assumed that if Otterpool Park did not take place, there would still be corresponding growth in the region, but in yet unspecified sites. By this method, the number of houses and jobs provided by Otterpool Park would not be deducted from the DM scenarios. This means that different TEMPro growth rates would be required for the DM and DS scenarios.
- 6.2.38 As described in Chapter 5, the Otterpool Park development proposals include significant provision for sustainable travel and sustainable living, with the result that less travel outside of the site on existing transport networks is expected compared to smaller developments that are not able to provide the onsite level of services and infrastructure that is necessary to minimise external travel. It is therefore a fair assumption that Otterpool Park would have a lower external trip rate than these types of small developments.
- 6.2.39 As a result of the above, and the significant number of homes and jobs proposed for Otterpool Park, the result would be that a significantly lower growth rate would be applied to the DS scenario than to the DM to calculate future baseline traffic flows for each scenario. In the 2037 assessment year, growth factors for the Folkestone & Hythe area would be around 10% greater in the DM case compared to the DS. For the 2044 and assessment year, the DM growth rate would be around 15% greater than for the DS scenario.
- 6.2.40 Since the assumptions regarding travel for housing and jobs in TEMPro is closer to that which would be expected for the smaller, less sustainable developments than for Otterpool Park, the effect on a region-wide basis in which TEMPro considers traffic growth is likely to be that the DM scenario would have a greater total number of trips on the highway network than the DS scenario once Otterpool Park development traffic is added to the DS scenario.
- 6.2.41 As the highway impact in this Transport Assessment is undertaken at a local level, the effect this would have on the modelling results should be considered. As mentioned previously, TEMPro applies a uniform growth rate across a region. The assumptions for traffic growth generated by Otterpool Park assume a routing pattern in which growth is greatest in the immediate vicinity of the site at the local access points and less at a distance from the site as traffic dissipates across the network. The effect

- on traffic growth in the DM and DS scenarios is therefore likely to be that traffic growth in the area around the Otterpool Park site would be greater in the DS scenario, but traffic growth further from the site, for example in Folkestone, can be expected to be greater in the DM scenario.
- 6.2.42 There is logic to using a method of forecasting traffic growth that deducts the number of Otterpool Park homes and jobs from TEMPro forecasts for the DS case but not for the DM. This would be applied in order to reflect the unique opportunity the creation of a large garden settlement on the proposed site would have on sustainable growth within Folkestone & Hythe. However, since the emerging Core Strategy for Folkestone & Hythe suggests that alternative sites to Otterpool Park for the provision of such a large number of homes and jobs are limited, it is perhaps more pertinent to consider a DM scenario where Otterpool Park is not developed and the achievable forecast for housing and jobs in the district is reduced. This enables a clear assessment to be undertaken of the impact of Otterpool Park on the surrounding network.
- 6.2.43 For the purposes of this assessment therefore, the homes and jobs that would be provided by the Otterpool Park development have been deducted when generating baseline traffic growth rates for both the DS and DM scenarios. This means that comparison between the results of DM and DS capacity testing would show an absolute worst case in terms of any increases in highway network delay and queuing in the DS scenario and that the DM scenario results would under-estimate network impacts without Otterpool Park if the housing and job forecasts for Folkestone & Hythe shown in Table 15 are met without Otterpool Park.
- 6.2.44 Clarifications on the above were provided to Highways England (now NH) when described in the 2019 TA, and can be found in Appendix L.

TEMPro growth rates used in the assessment

- 6.2.45 TEMPro growth factors have been derived for the following highway capacity modelling purposes:
 - 'All-purpose origin/ destination' factors to be applied to traffic within Ashford and Folkestone & Hythe;
 - 'Rural Motorway' factors to represent forecast traffic growth on the M20 within Ashford and Folkestone & Hythe, utilising the NTEM (v7.2) datasets; and
 - 'All road types' factors using the NTEM (v7.2) dataset for traffic in the geographic area of Canterbury.
- 6.2.46 Table 16 presents the peak period all-purpose growth factors by origin/ destination, applied to the VISUM modelling area, including the operational modelling, for the Ashford and Folkstone & Hythe regions respectively.

Table 16 TEMPro All Purpose Growth factors (Origin/ Destination) for Ashford and Folkestone & Hythe

	TEMPro Growth Factors									
		Ashf	ford		Folkestone & Hythe					
Period	eriod AM Peak	Peak	PM Peak		AM Peak		PM Peak			
	Origin	Destination	Origin	Destination	Origin	Destination	Origin	Destination		
2017 to 2018	1.0095	1.0087	1.0085	1.0092	1.0114	1.0141	1.0132	1.0115		
2017 to 2037	1.1376	1.1077	1.1185	1.1405	1.0383	1.0903	1.0831	1.0510		
2017 to 2044	1.2136	1.1760	1.1862	1.2139	1.0766	1.1066	1.1028	1.0857		

	TEMPro Growth Factors									
		Ashford				Folkeston	e & Hythe			
Period	AM	Peak	PM I	Peak	AM	Peak	PM	Peak		
	Origin	Destination	Origin	Destination	Origin	Destination	Origin	Destination		
(8,500 homes)										
2017 to 2044 (10,000 homes)	1.2136	1.1760	1.1862	1.2139	1.0522	1.0947	1.0876	1.0622		

6.2.47 Table 17 sets out the calculated growth factors focused on rural motorways within the geographic areas of Ashford and Folkestone & Hythe, which have been selected to represent the M20 links within the modelling area.

Table 17 Forecast TEMPro Growth factors (Rural Motorway) for Ashford and Folkestone & Hythe

	TEMPro Growth Factors							
Period	Asl	nford	Folkstone & Hythe					
	AM Peak	PM Peak	AM Peak	PM Peak				
2017 to 2018	1.0127	1.0125	1.0164	1.0125				
2017 to 2037	1.1994	1.2068	1.1371	1.1400				
2017 to 2044 (8,500 homes)	1.2885	1.2942	1.1772	1.1801				
2017 to 2044 (10,000 homes)	1.2885	1.2942	1.1577	1.1592				

6.2.48 Table 18 presents the growth factors used for the Canterbury junction capacity assessment.

Table 18 Forecast TEMPro Growth factors (All Road Types) for Canterbury

Period	Cante	erbury
Period	AM Peak	PM Peak
2018 to 2037	1.1372	1.1438
2018 to 2044	1.2051	1.2098

6.2.49 At the Old Dover Road / St Lawrence Road / The Drive junction in Canterbury, no growth was applied to The Drive, as agreed with Kent County Council. This is because The Drive is a 'no through' road serving a residential cul-de-sac which is not expected to experience further growth.

Freight on the M20

- 6.2.50 The Department for Transport recommends the method for determining the growth in HGV traffic is to use the Road Traffic Forecasts 2018 (RTF18).
- 6.2.51 Based on RTF18, the growth factors were calculated and applied to the base year model, these are shown in Table 19.

Table 19 HGV Traffic Growth Factors applied to Base Year Model

Year	Motorway	Non-Motorway
2017	1.000	1.000
2018	1.005	1.0005
2024	1.033	1.012
2030	1.064	1.034
2037	1.122	1.071
2039	1.139	1.083
2044	1.180	1.111

Forecast Flows on Key Roads

6.2.52 Table 20 to Table 22 present the forecast traffic flows without Otterpool Park development on a number of key roads within the study area that result from the forecasting method described in this chapter.

Table 20 2037 Forecast Traffic Flows on Key Roads without Otterpool Park Development

	Number of Vehicles						
Link Name	Δ	M Peak Hou	ır	Р	M Peak Hou	ır	
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	
B2067 Otterpool Lane	261	270	531	388	151	539	
A20 Ashford Road b/w Otterpool Lane & Newingreen	320	392	712	471	351	822	
old A20 Ashford Road at Newingreen	303	490	793	497	373	870	
A20 Ashford Road b/w Newingreen & M20	804	777	1,581	789	939	1,728	
A20 Ashford Road at Barrow Hill	469	400	869	486	390	876	
Aldington Road b/w Otterpool Lane & Stone Street	121	165	286	171	106	277	
Stone Street	329	123	452	76	197	273	
B2067 Aldington Road west of Otterpool Lane	173	125	298	123	106	229	
Lympne Hill	261	141	402	102	276	378	
B2068 Stone Street	329	123	452	76	197	273	
M20 east of J11	2,762	2,593	5,355	2,592	3,027	5,619	
M20 west of J11	2,766	2,624	5,390	2,428	3,163	5,591	
Cheriton Road	679	376	1,055	683	391	1,074	
A261 Hythe Road	345	369	714	534	348	882	
A259 Military Road	1,206	-	1,206	1,113	-	1,113	
A259 Prospect Road	939	542	1,481	872	806	1,678	
Swan Lane	113	153	266	206	114	320	
A20 Hythe Road west of Swan Lane	527	356	883	418	453	871	
A2070 Kennington Road	864	471	1,335	493	742	1,235	
A262 Hythe Road	440	419	859	686	481	1,167	
A260 Spitfire Way	657	1,128	1,785	1,152	753	1,905	
A260 Canterbury Road	506	1,721	2,227	873	1,377	2,250	
Alkham Valley Road	1,170	229	1,399	1,174	116	1,290	
Nackington Road	594	413	1,008	359	584	942	
Old Dover Road	676	357	1,032	316	601	917	

Table 21 2044 Forecast Traffic Flows on Key Roads without Otterpool Park Development

	Number of Vehicles							
Link Name	A	M Peak Hou	ır	P	M Peak Hou	ır		
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way		
B2067 Otterpool Lane	267	264	531	351	149	500		
A20 Ashford Road b/w Otterpool Lane & Newingreen	321	416	737	473	375	848		
old A20 Ashford Road at Newingreen	307	516	823	510	410	920		
A20 Ashford Road b/w Newingreen & M20	850	779	1,629	808	1,003	1,811		
A20 Ashford Road at Barrow Hill	497	393	890	485	402	887		
Aldington Road b/w Otterpool Lane & Stone Street	116	164	280	179	82	261		
Stone Street	345	126	471	111	210	321		
B2067 Aldington Road west of Otterpool Lane	177	125	302	123	108	231		
Lympne Hill	266	140	406	102	282	384		
B2068 Stone Street	345	126	471	111	210	321		
M20 east of J11	2,939	2,569	5,508	2,601	3,181	5,782		
M20 west of J11	3,002	2,575	5,577	2,415	3,374	5,789		
Cheriton Road	692	381	1,073	699	418	1,117		
A261 Hythe Road	332	406	738	570	342	912		
A259 Military Road	1,192	-	1,192	1,144	-	1,144		
A259 Prospect Road	933	556	1,489	890	805	1,695		
Swan Lane	112	157	269	210	114	324		
A20 Hythe Road west of Swan Lane	561	346	907	415	471	886		
A2070 Kennington Road	921	488	1,409	511	785	1,296		
A262 Hythe Road	468	432	900	710	508	1,218		
A260 Spitfire Way	653	1,153	1,806	1,175	752	1,927		
A260 Canterbury Road	511	1,748	2,259	874	1,394	2,268		
Alkham Valley Road	1,206	220	1,426	1,179	119	1,298		
Nackington Road	619	431	1,050	373	607	981		
Old Dover Road	703	371	1,073	327	624	951		

Table 22 2044 10k Forecast Traffic Flows on Key Roads without Otterpool Park Development

	Number of Vehicles							
Link Name	A	M Peak Ho	ur	P	M Peak Hou	ır		
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way		
B2067 Otterpool Lane	263	267	530	355	147	502		
A20 Ashford Road b/w Otterpool Lane & Newingreen	325	418	743	483	380	863		
old A20 Ashford Road at Newingreen	310	519	829	520	415	935		
A20 Ashford Road b/w Newingreen & M20	857	791	1,648	818	1,007	1,825		
A20 Ashford Road at Barrow Hill	493	399	892	491	408	899		
Aldington Road b/w Otterpool Lane & Stone Street	117	160	277	177	83	260		
Stone Street	351	128	479	112	214	326		
B2067 Aldington Road west of Otterpool Lane	178	126	304	124	109	233		
Lympne Hill	268	142	410	103	283	386		
B2068 Stone Street	351	128	479	112	214	326		
M20 east of J11	2,954	2,619	5,573	2,641	3,204	5,845		
M20 west of J11	3,013	2,635	5,648	2,460	3,388	5,848		
Cheriton Road	705	384	1,089	702	424	1,126		
A261 Hythe Road	339	404	743	569	344	913		
A259 Military Road	1,207	-	1,207	1,148	-	1,148		
A259 Prospect Road	943	558	1,501	894	812	1,706		
Swan Lane	113	158	271	211	115	326		
A20 Hythe Road west of Swan Lane	556	352	908	421	476	897		
A2070 Kennington Road	930	496	1,426	517	792	1,309		
A262 Hythe Road	472	439	911	719	513	1,232		
A260 Spitfire Way	661	1,159	1,820	1,180	759	1,939		
A260 Canterbury Road	514	1,762	2,276	880	1,405	2,285		
Alkham Valley Road	1,211	222	1,433	1,189	116	1,305		
Nackington Road	627	436	1,063	378	615	993		
Old Dover Road	711	375	1,086	331	631	962		

6.3 Committed Highway Schemes

- 6.3.1 The following committed transport infrastructure/improvement schemes have been taken into account in the DM and DS road network for the assessment:
 - Recent M20 Junction 10A and associated changes to the surrounding road network, including M20 Junction 10;
 - New signalised site access junction on A20 Hythe Road for Willesborough Lees development;
 - Traffic calming proposals and new site access points through Sellindge Village proposed for the Sellindge residential development;
 - Adjustments to the flare length on the A261 Hythe Road at the junction with A20 Ashford Road required for the Land East of Ashford Road development;
 - A2034 Cheriton Road/ A20 Cherry Garden Avenue junction and link proposals for the Folkestone Seafront masterplan; and
 - Nackington Road/ Old Dover Road and Old Dover Road/ St Lawrence Road/ The Drive proposals for the Mountfield Park development.
- 6.3.2 An overview of these scheme is provided in the subsequent sections. Further information is provided in Appendix M.

New signalised site access junction on A20 Hythe Road

- 6.3.3 The Willesborough Lees development proposals (Planning Ref. 16/01722/AS) include provision for a new signalised site access junction on the A20 Hythe Road, located opposite the Tesco service access.
- 6.3.4 The signalised junction arrangement includes the following design measures:
 - A single eastbound carriageway approach for left turning and ahead traffic (3.0m lane width);
 - A single westbound carriageway approach with a three PCU right turn storage area to the Tesco service yard and Summer Hill House access (3.5m lane widths);
 - A single site access approach with 10 PCU left turn flare (3.5m lane widths); and
 - A pedestrian crossing on the western arm of the junction only.
- 6.3.5 The Transport Assessment report associated with the development application noted that there is also the opportunity for the provision of queue detection loops at the junction arrangement, which would place a hurry call or a stage extension to manage the queue on the eastern approach and afford more protection in the event that occasional queuing extends for the full distance between the stop line and the Tesco roundabout. However, this would be infrequent and only impact the development access arm.

Sellindge Village traffic calming proposals and new site accesses

- 6.3.6 A number of traffic calming measures have been illustrated within the 'Site South of A20' development supporting Transport Assessment, which includes the following improvements to the A20 in Sellindge:
 - Narrowing of the carriageway to the specified minimum width of 6.1m;
 - Improving footway and crossing facilities;
 - Clearly defined parking facilities along A20 Ashford Road;
 - Widening footways and the provision of segregates pedestrian/ cycleway between Swan Lane and Primary School; and
 - Provision of 30mph gateway to reduce vehicle speeds.

Ashford Road / A261 Hythe Road / Stone Street junction (Newingreen junction)

Committed Scheme

- 6.3.7 A Technical Note was prepared following post application discussions with Kent County Council in relation to the Land East of Ashford Road (A20) development (Planning Ref. Y16/1122/SH). This considered amendments to the junction mitigation set out in accompanying Transport Assessment.
- 6.3.8 The proposed amendment to the junction includes extension of the flare length of A261 Hythe Road by realigning the southern kerb edge.

Alternative Schemes

- 6.3.9 The original Transport Assessment (September 2016) accompanying the Land East of Ashford Road (A20) application (Planning Ref. Y16/1122/SH) concluded that mitigation was required to accommodate the additional development flows. It proposed the redesign of the existing priority layout to a signalised junction arrangement. However, this scheme was subsequently rejected by Kent County Council for the following main reasons:
 - The geometry was insufficient to accommodate the abnormal load vehicles used by businesses at Link Park at the southern end of Otterpool Lane;
 - It did not provide sufficient capacity to accommodate future traffic growth; and
 - Insufficient monetary contributions were available to fund the scheme.
- 6.3.10 In addition, it is also understood that Kent County Council has considered a further signalised scheme taking account of the issues raised above, to improve the performance of this junction. Enhancement features include:
 - Full signalisation of the junction;
 - Widening on Stone Street to provide two entry lanes and one exit lane:
 - Utilisation of the existing central reservation on A20 Ashford Road southbound arm to provide three entry arms and two exit arms; and
 - Widening on Hythe Road.
- 6.3.11 The scheme is not currently programmed for implementation due to insufficient funds.

A2034 Cheriton Road / A20 Cherry Garden Avenue junction

- 6.3.12 The Folkestone Seafront development's (Planning Ref.Y12/0897/SH) accompanying S106 Agreement, sets out a package of committed highway measures on A2034 Cheriton Road arm (east). The proposed measures include:
 - Removal of the existing pedestrian crossing and extension of right turning lane into Cherry Garden Avenue to improve straight-on movements; and
 - Improvements to The Harvey Grammar School access arrangement through implementation of a one-way system with separate entry and exit points and removal of
 - The existing hatching and replace with an extended right turning lane; and the existing hatching and replace with an extended right turning lane.

Nackington Road / Old Dover Road and Old Dover Road / St Lawrence Road / The Drive

- 6.3.13 The Mountfield Park South Canterbury Transport Assessment (Planning Ref. CA/16/00600) sets out a package of proposed junction improvements to Old Dover Road junctions with Nackington Road and St Lawrence Road to increase capacity.
- 6.3.14 The proposed capacity improvements to increase operational capacity include:
 - The provision of a right turn facility from Old Dover Road in St Lawrence Road, mirroring that
 provided from Old Dover Road into Nackington Road in the opposite direction. The right turn would
 remove the obstruction caused by vehicles wishing to turn right into St Lawrence;
 - Proposed changes to the signal phasing, with The Drive and St Lawrence Road proposed to operate within the same stage as opposing arms;
 - Removal of existing on-street parking bays (13 spaces) along the northern extent of Old Dover Road; and
 - Realignment of the existing kerb-line to allow a left turn out of Nackington Road to be phased at the same time as the right turn into Nackington Road.

6.4 Folkestone and Hythe District Council Core Strategy

- 6.4.1 As mentioned in Chapter 2.4, the Folkestone and Hythe District Council Core Strategy Review Local Plan was submitted in March 2020 and Examination Hearings were completed in July 2021. The Planning Inspectors have issued a letter dated 16 July 2021 to state that they
 - "We are now able to identify the main modifications which we consider are necessary to make the submitted Core Strategy Review sound."
- 6.4.2 The Core Strategy proposes policies that include the Otterpool Park development as a garden settlement within the North Downs character area.
- 6.4.3 A Monitor and Manage Framework is proposed as part of the Core Strategy to provide mitigation for the Strategic Road Network. This approach is assumed for this TA.
- 6.4.4 Separate traffic modelling assessments have been undertaken for the Core Scenario for Folkestone and Hythe District Council to review the future traffic effects of the Core Strategy. The Core Strategy assessment identifies key locations where mitigation is required and also the possible mitigation options.
- 6.4.5 The traffic assessment undertaken in this TA however does not take into account the Core Strategy assessments and has been carried out independently as:
 - The Core Strategy has yet to be adopted
 - The Core Strategy assessment was not complete by the time the Otterpool Park assessment commenced
 - The Core Strategy assumptions for the Otterpool Park development would not be the same as those used in this TA, as this was not complete at the time.
- 6.4.6 A Matter 7 Statement dated 18 June 2021, for the Folkestone and Hythe Core Strategy Review was submitted for the Examination in Public on behalf of Otterpool Park LLP. This statement demonstrates that the estimated driver trips assessed in the AM and PM peak hour for the Core Strategy Review is a worst case compared to this TA.

7 Development Trip Generation – Worst Case Assumptions

7.1 Introduction

- 7.1.1 Discussions relating to the method of calculating trip generation were initially held with Kent County Council, Folkestone & Hythe District Council and Highways England (now NH) between April 2017 and March 2018. Following the submission of the outline planning application in 2019, further comments relating to the trip generation method were received. On 10th February 2020, a meeting was held with Kent County Council and Folkestone & Hythe District Council to agree how to resolve these comments raised.
- 7.1.2 This Chapter provides an overview of the agreed method and a summary of the number of trips expected to be generated by each land use for each assessment scenario. The trip generation method technical note⁷ in Appendix N documents the discussions and describes the agreed method in detail. Please note that the tables presented in this chapter may vary slightly compared to those reported in Appendix N, this is owing to minor amendments to the development quantum since the production of the Technical Note, however the principles and methodology set out remain unchanged.

This agreed method uses the traditional approach reflective of the 'predict and provide' methodology derived from historic trip rate patterns. This approach is based on various sources of data including 2011 Census, TRICS surveys and the National Travel Survey. As the data is up to 10 years old and does not consider any step changes to the derived mode shares of the latest travel patterns and sustainable travel choices to be promoted by the development, the trips generated via this methodology is considered a worst case for car trips.

7.2 Overview of Methodology

Trips by Land Use

- 7.2.1 The objective for the development is that the site will provide a sufficient scale and range of services that will meet the demands of the local population such that the need to travel long distances by non-sustainable modes of transport will be minimised. It is also anticipated that the services provided will not be of a type that will attract significant trips from people living external to Otterpool Park. The development quantum has therefore been optimised to match on-site supply to on-site demand such that the number of external trips should be minimised.
- 7.2.2 By this definition, the majority of trips generated by the Retail/ commercial and Community services land uses are expected to originate from the on-site Residential land uses. Along with the employment land use, the residential land use is therefore expected to be the main driver for trip generation. Trip rates for the employment and residential land uses were calculated by deriving trip rates from comparator sites within the TRICS 7.7.1 database.
- 7.2.3 Since the majority of trips generated by the retail and community land uses are expected to originate from on-site residential land uses, the number of trips generated by the retail and community land uses were calculated by considering the demand for these land uses generated by the on-site Residential land uses. To achieve this, the on-site Residential land use trip generation was disaggregated by trip purpose and each purpose was assigned to an associated land use, e.g., shopping trips were assigned to retail land use, education trips were assigned to education land uses.
- 7.2.4 This 'internal' demand for retail and community land uses was uplifted by a suitable percentage to account for a small number of trips made to these land uses from outside Otterpool Park (external

⁷ Otterpool Park Trip Generation Calculation Method Technical Note (Arcadis, 2020)

- trips). This percentage was derived by considering the likely ratio of internal to external trips the land use would generate based on the propensity of each land use to attract trips from off-site locations compared to on-site locations, e.g., for the education land uses, the ratio was derived from the proportion of school spaces likely to be filled by on-site residents compared to the number filled by off-site residents.
- 7.2.5 Trip rates for all land uses were derived for the local AM and PM peak hours, which have been found to be 8-9am and 5-6pm based on local traffic count data, as described in Chapter 3.

Trip Rates by Land Use

7.2.6 As described previously, the trip generation technical note contained within Appendix N describes the method used to derive the number of all-mode trips generated by the different land uses proposed for the site. Table 23 below presents the AM and PM peak trip rates that result from these trip generation methods. Trip rates are per 100m2 gross internal floor areas except for Extra Care and Residential, which are trip rates per unit. It should be noted that trip rates for Retail, Business, Café/Restaurant, Pub/Takeaway and Education land uses are calculated based on demand and are independent of floor area.

Table 23 All-mode Trip Rates by Land Use

Lord Hos		AM Peak		PM Peak			
Land Use	Arrivals	Departures	Total	Arrivals	Departures	Total	
Residential	0.19	0.74	0.93	0.59	0.31	0.90	
Extra Care Housing	0.12	0.13	0.25	0.09	0.25	0.33	
Hotel	0.41	1.07	1.48	0.99	0.50	1.49	
Commercial business in hubs	2.40	0.21	2.61	0.17	1.99	2.17	
Commercial business park	2.75	0.24	2.98	0.20	2.28	2.47	
Light Industrial business park	1.14	0.10	1.24	0.08	0.95	1.03	
Retail	4.22	1.13	5.35	4.28	6.73	11.01	
Business							
Café / Restaurant	3.76	0.89	4.65	3.40	5.60	9.00	
Pub / Takeaway							
Secondary schools	4.03	1.31	5.34	0.18	0.52	0.71	
Primary School	7.21	2.34	9.55	0.31	0.95	1.31	
Nursery	9.60	2.70	12.30	0.59	2.53	3.13	
Community Centre	0.35	0.05	0.39	0.24	0.47	0.71	
Health	1.67	0.34	2.01	0.71	1.71	2.42	

Land Use		AM Peak		PM Peak				
Land Use	Arrivals	Departures	Total	Arrivals	Departures	Total		
Sports pavilion	1.65	0.40	4 04	0.70	0.40	2.02		
Indoor sports hall	1.65	0.19	1.84	0.79	2.13	2.92		

Trip Rate Reductions

- 7.2.7 Some of the trips assigned to different land uses will be made by a single person in a single journey as part of a chain of linked trips. For example, a person may leave home and make a trip to the health centre before going to work and then make a trip to the shops after leaving work before arriving home. Using the method described above, each visit to the four land uses home, the health centre, work and retail would generate 1 arrival and 1 departure trip for each land use, thus registering a total of 8 one-way trips. However, as each visit is made as part of a chain of linked trips, the actual number of one-way trips made would be 4. When considering the number of trips made by people living externally to the site, this would have the effect of over estimating the number of external trips as some trips would be made internally as linked trips.
- 7.2.8 In addition, some of the trips originating from external locations are likely to already be present on the transport networks and will in future be transferred to the Otterpool Park site. These trips would have the effect of over estimating the number of external trips if they were counted as new trips on the networks. These trips must therefore be discounted from the trip generation before an impact assessment is undertaken.
- 7.2.9 The level of trip reduction applied was determined using linked trip information from National Travel Survey (NTS) data, which considers what is the next trip purpose for a traveller having completed their main trip purpose. If the next trip purpose is to travel home, then the trip is not considered to be linked to other trips. To calculate the trip reductions that this data suggests is applicable, we have considered what trip reduction is applicable to other trip purposes for each main trip purpose. For example, the NTS data suggests that 5% of all trips where the main trip purpose is Commuting / Business includes a linked Shopping trip. The number of Shopping trips linked to Commuting trips is therefore equal to 5% of the total number of Commuting trips. A reduction in Shopping trips to the value of 5% of the total number of Commuting trips is therefore applicable.
- 7.2.10 This calculation was applied to all trip purposes to derive the applicable trip reduction numbers for each trip purpose. Since the percentage trip reduction for each trip purpose is influenced by the type and scale of land use provision, and since the scale of land use provision varies in each assessment year, the trip reductions for each assessment year also vary.
- 7.2.11 Table 24 below details the linked trip reductions applied to incoming external trips by purpose. The high reductions for Shopping, Leisure and Personal business trips reflect the fact that these land uses are not expected to attract trips from off-site locations for the sole purpose of those land uses.

Table 24 Linked Trip Reductions applied to Incoming External Trips by Purpose

Trip Purpose		AM Peak		PM Peak					
	Arrivals	Departures	Combined	Arrivals	Departures	Combined			
Commuting	16%	36%	18%	23%	11%	12%			
Education	8%	7%	8%	100%	49%	55%			
Education escort	22%	14%	20%	100%	100%	100%			
Shopping	100%	100%	100%	100%	100%	100%			
Leisure	100%	56%	100%	54%	100%	100%			
Personal Business	100%	100%	100%	27%	100%	72%			
Other escort	100%	100%	100%	0%	100%	100%			
TOTAL	15%	25%	17%	36%	15%	21%			

7.3 Trip Generation by Land Use

7.3.1 Table 25 to Table Table 27 present the total all-mode trip generation by land use for the three assessment years.

Table 25 Total All-Mode Trip Generation by Land Use (2037)

			Total Trips	(All Modes)				
Land Use	Α	M Peak Ho	ur	PM Peak Hour				
	Arr	Dep	Total	Arr	Dep	Total		
Residential	363	1,680	2,043	1,538	722	2,259		
Extra Care Housing	56	16	72	11	63	73		
Hotel	16	41	57	39	16	55		
Commercial business in hubs	207	10	216	13	213	226		
Commercial business park	265	12	278	16	273	290		
Light Industrial business park	152	7	159	5	84	89		
Retail	296	58	355	373	618	991		
Business								
Café / Restaurant	208	38	246	218	369	587		
Pub / Takeaway								
Secondary schools	371	121	492	13	34	47		
Primary School	1,149	376	1,525	24	103	127		
Nursery	259	74	333	8	56	64		
Community Centre	12	0	12	0	12	12		

		Total Trips (All Modes)										
Land Use	А	M Peak Ho	ur	PM Peak Hour								
	Arr	Dep	Total	Arr	Dep	Total						
Health	54	8	61	24	64	88						
Sports pavilion	10	0	10	1	4.4	16						
Indoor sports hall	10	0	10	I	14	16						
Total	3,417	2,442	5,859	2,284	2,641	4,925						

Table 26 Total All-Mode Trip Generation by Land Use (2044 8.5k)

			Total Trips	(All Modes)	ı		
Land Use	F	AM Peak Ho	ur		PM Peak Ho	ır	
	Arr	Dep	Total	Arr	Dep	Total	
Residential	488	2,286	2,773	2,109	983	3,092	
Extra Care Housing	109	32	141	22	123	144	
Hotel	15	32	48	31	16	47	
Commercial business in hubs	211	13	224	15	214	228	
Commercial business park	877	54	930	61	886	947	
Light Industrial business park	381	23	404	15	217	232	
Retail	353	80	433	511	789	1,301	
Business					465		
Café / Restaurant	247	51	297	298		763	
Pub / Takeaway							
Secondary schools	726	241	967	19	65	83	
Primary School	1,331	441	1,772	33	121	153	
Nursery	344	98	442	10	74	85	
Community Centre	13	0	13	0	13	13	
Health	64	11	75	33	78	110	
Sports pavilion	10						
Indoor sports hall	13	0	14	2	20	22	
Total	5,172	3,361	8,533	3,158	4,063	7,221	

Table 27 Total All-Mode Trip Generation by Land Use (2044 10k)

			Total Trips	s (All Modes)		
Land Use		AM Peak Ho	our	ı	PM Peak Hou	ır	
	Arr	Dep	Total	Arr	Dep	Total	
Residential	539	2,496	3,036	2,301	1,087	3,387	
Extra Care Housing	213	63	276	43	244	287	
Hotel	15	31	46	30	15	45	
Commercial business in hubs	210	13	223	14	213	228	
Commercial business park	872	53	925	60	884	944	
Light Industrial business park	379	23	402	15	217	231	
Retail	386	89	475	578	865	1,443	
Business							
Café / Restaurant	261	56	317	334	503	837	
Pub / Takeaway							
Secondary schools	728	240	968	20	66	86	
Primary School	1,514	502	2,016	36	137	173	
Nursery	370	106	476	11	80	91	
Community Centre	12	0	12	0	13	13	
Health	67	11	78	36	82	118	
Sports pavilion	42	0	40	2	24	20	
Indoor sports hall	13	0	13	2	21	22	
Total	5,579	3,685	9,263	3,480	4,425	7,906	

7.4 Construction Vehicles Trip Generation

- 7.4.1 The construction trips generated by the development have been estimated based on the Illustrative Accommodation Schedule (ES Appendix 4.4). Although the specific development build out sequence is currently undetermined, this schedule provides an indicative plan.
- 7.4.2 From the yearly phases schedule for each of the assessment years, the estimated annual number of HGVs generated by the development has been determined based on assumed waste generated and materials required. This estimation assumes that each HGV has a capacity of 6.1m3.
- 7.4.3 The daily number of HGVs generated by the site is determined based on the assumption of 252 working days in the year. As a worst case, it is assumed that between 20% and 25% of the daily HGV trips will occur during the AM and PM peak hours. The resulting HGVs trips considered for the VISUM modelling are summarised in Table 28. It has been assumed that the HGVs will be using the M20 to arrive and depart the development site, with a 50% split between the west and east direction.

Table 28 Development Construction Vehicle Trips

	Number of HGVs										
Year	Total Annual	Average Daily	Average Peak Hour	Movements							
2037	17,765	71	21	42							
2044 (8.5k)	818	4	1	2							
2044 (10k)	1,738	7	1	2							

7.5 Trip Generation Summary

7.5.1 Table 29 presents a summary of the total, internal and external all-mode trip generation for each assessment year.

Table 29 Summary of Trip Generation by Assessment Year

	Total Trips (All Modes)										
Assessment Year	Д	M Peak Hou	ır	PM Peak Hour							
	Total	External	Internal	Total	External	Internal					
2037	5,859	3,531	2,328	4,925	3,102	1,822					
2044 (8.5k)	8,533	5,380	3,154	7,221	4,746	2,475					
2044 (10k)	9,263	5,745	3,518	7,906	5,112	2,793					

8 Development Trips by Mode - Worst Case Assumptions

8.1 Introduction

- 8.1.1 This Chapter describes how mode split information has been applied to the trip generation in Chapter 7 to calculate trip generation by mode.
- 8.1.2 The method used has required separate mode splits to be derived for internal and external trips as well as for each trip purpose, in acknowledgement that people are likely to travel using different modes for different trip purposes.
- 8.1.3 Appendix O contains a technical note⁸ describing the method of derivation of the mode splits in detail. The method described was initially agreed with Kent County Council, Folkestone & Hythe District Council and Highways England (now NH) during discussions held between May 2017 and November 2017. Further comments relating to the derivation of mode splits were received following the submission of the outline planning application in 2019 and subsequent updates to the method of derivation have been made to incorporate these.
- 8.1.4 As mentioned previously, the approach to this Transport Assessment uses the traditional 'predict and provide' methodology and results in a worst case scenario for car trips as it is based on historical trip data that does not take into account step changes to the latest travel patterns and sustainable travel choices promoted by the development.

8.2 Overview of Methodology

8.2.1 A summary of the method is presented below:

Work Related Trips:

- a) The mode split for work related trips is based on Census 2011 travel to work data for Shepway (the mid-layer Super Output Area (SOA) that represents the district of Folkestone & Hythe);
- b) For internal trips: Census travel to work data for trips made over distances up to 2km has been used. The distance of 2km is the shortest distance for which mode split information is presented within Census data. It is also approximately the distance from the centre of the Otterpool Park site to the nearest settlements outside the site boundary. It is therefore assumed that trips made up to 2km in distance are likely to be internal to the site, while trips that are over 2km in distance would be external to the site;
- For external trips: Census travel to work data for trips made over distances greater than 2km was used.

Non-Work Related Trips:

- a) Non-work related mode splits from the National Travel Survey (NTS) were used;
- b) The national average mode splits provided by the NTS were adjusted to reflect travel conditions in Folkestone & Hythe by considering the difference between the Census 2011 travel to work mode split for Folkestone & Hythe and the NTS Commuter mode split. An 'NTS to Census' adjustment factor was derived and applied to the NTS mode splits;
- For internal trips: the adjustment factor was derived using Census travel to work data for trips made over distances up to 2km;

⁸ Otterpool Park Method for deriving Mode Splits (October 2018)

- d) For external Education trips: Census travel to work data for trips made over distances between 2km and 10km was used to derive the adjustment factor. Up to 10km is expected to represent the maximum distance most people are likely to travel for education purposes;
- e) For all other external trips: Census travel to work data for trips made over distances greater than 2km was used to derive the adjustment factor.

8.3 Internal and External Trip Mode Splits by Trip Purpose

8.3.1 Table 30 and Table 31 present the mode splits by trip purpose for internal and external trips respectively used in this assessment, derived from the Census and NTS data as described in the technical note in Appendix O.

Table 30 Mode Splits by Trip Purpose for Internal Trips

			Mode	Split		
Period	Commuting	Education	Shopping	Personal Business	Leisure	Education escort
Driver	24%	5%	10% 2		9%	5%
Passenger	3%	2%	7%	13%	9%	2%
Taxi	0%	0% 0%		0%	0%	0%
Motorcycle	1%	0%	0%	0%	0%	0%
Train	0%	0%	0%	0%	0%	0%
Bus / Minibus / Coach	5%	2%	3%	2%	3%	2%
Light Rail	0%	0%	0%	0%	0%	0%
Bicycle	11%	3%	3%	2%	5%	3%
Walk	56%	87%	76%	62%	75%	87%
Total	100%	100%	100%	100%	100%	100%

Table 31 Mode Splits by Trip Purpose for External Trips

			Mode	Split		
Period	Commuting	Education	Shopping	Personal Business	Leisure	Education escort
Driver	78%	50%	62%	69%	53%	50%
Passenger	6%	17%	23%	26%	32%	17%
Taxi	0%	0%	0%	0%	0%	0%
Motorcycle	1%	1%	1%	0%	1%	1%
Train	4%	1%	1%	0%	1%	1%
Bus / Minibus / Coach	5%	10%	6%	2%	5%	10%
Light Rail	0%	0%	0%	0%	0%	0%
Bicycle	2%	3%	1%	0%	1%	3%
Walk	3%	18%	7%	3%	7%	18%
Total	100%	100%	100%	100%	100%	100%

8.4 Allocation of Mode Splits

In Chapter 7 we described how the residential trip purposes were allocated to on- and of-site land uses to determine the number of AM and PM peak trips each land use is expected to generate. In Table 32 we have combined the land uses, trip purposes and mode split categories to show how the mode splits in Table 30 and Table 31 were applied to the trips generated by each land use to determine the number of trips by mode generated by each land use. A Technical Note on the Trip Rates by Mode by Land Use summarises the values used and is found in Appendix P.

Table 32 Allocation of Mode Splits by Trip Purpose to Land Uses

Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Education Nursery Education Entertainment / public activity Leisure Escort Education escort Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure	Land Use	Trip Purpose	Mode Split Allocation			
Education Education Escort Education Education Education Escort Education Education escort Shopping Shopping Other escort Other escort Personal business Personal business Visiting friends at private home Leisure Visiting friends elsewhere Leisure Entertainment / public activity Leisure Byort: participate Leisure Holiday: base Leisure Day trip Leisure Other including just walk Leisure Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Etatil Shopping Business Personal business Personal business Personal business Personal business Edé / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Education Primary schools Education Educati		Commuting	Commuting			
Escort Education Education escort Shopping Other escort Other escort Personal business Personal business Visiting friends at private home Leisure Visiting friends elsewhere Leisure Entertainment / public activity Leisure Sport: participate Leisure Holiday: base Leisure Other including just walk Leisure Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Etatil Shopping Shopping Business Personal business Café / Restaurant Entertainment / public activity Leisure Entertainment / public activity Leisure Commercial business park Commuting / Business Commuting Etatil Shopping Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Education Education Frimary schools Education Education Full Non-Residential Land Uses Entertainment / public activity Leisure Escort Education		Business	Commuting			
Residential Resid		Education	Education			
Residential Other escort Personal business Personal business Visiting friends at private home Visiting friends elsewhere Entertainment / public activity Leisure Sport: participate Holiday: base Leisure Day trip Other including just walk Leisure Hotel Holiday: base Leisure Commercial business in hubs Commuting / Business Commuting Light industrial business park Retail Shopping Business Personal business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Entertainment / public activity Primary schools Education Education Primary schools All Non-Residential Land Uses Commuting / Business Personal business Personal business Peducation Education Ed		Escort Education	Education escort			
Residential Personal business Visiting friends at private home Visiting friends elsewhere Entertainment / public activity Sport: participate Holiday: base Leisure Day trip Other including just walk Hotel Commercial business in hubs Commuting / Business Commuting Commercial business park Light industrial business park Retail Shopping Business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Education Education Primary schools Education Education Education Education All Non-Residential Land Uses All Non-Residential Land Uses Escort Education Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business		Shopping	Shopping			
Residential Visiting friends at private home Leisure		Other escort	Other escort			
Visiting friends at private home Visiting friends elsewhere Entertainment / public activity Entertainment / En	Desidential	Personal business	Personal business			
Entertainment / public activity Sport: participate Holiday: base Day trip Other including just walk Leisure Hotel Hotel Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Commuting Retail Shopping Business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Entertainment / public activity Education Primary schools Education Education Primary schools Education Education Education All Non-Residential Land Uses Commuting (staff) Escort Education Entertainment / public activity Leisure Entertainment / Description Education Education escort Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure	Residential	Visiting friends at private home	Leisure			
Sport: participate Leisure Holiday: base Leisure Day trip Leisure Other including just walk Leisure Hotel Holiday: base Leisure Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Shopping Business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Entertainment / public activity Education Primary schools Education Education Primary schools Feducation Education		Visiting friends elsewhere	Leisure			
Holiday: base Leisure Day trip Leisure Other including just walk Leisure Hotel Holiday: base Leisure Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Personal business Personal business Porsonal business Personal business Personal business Personal business Leisure Indoor sports hall Sport: participate Leisure		Entertainment / public activity	Leisure			
Day trip Other including just walk Leisure Hotel Hotel Holiday: base Commercial business in hubs Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Primary schools Education Education Primary schools All Non-Residential Land Uses Escort Education Entertainment / public activity Leisure Escort Education escort Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure		Sport: participate	Leisure			
Other including just walk Hotel Hotel Holiday: base Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Business Personal business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Primary schools Education Education Primary schools Education Education Commuting Escort Education Education Education Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business		Holiday: base	Leisure			
Hotel Hotel Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure		Day trip	Leisure			
Commercial business in hubs Commuting / Business Commuting Commercial business park Commuting / Business Commuting Light industrial business park Commuting / Business Commuting Retail Shopping Business Personal business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Education Nursery Education Entertainment / gublic activity Leisure Escort Education Escort Education escort Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure		Other including just walk	Leisure			
Commercial business park Light industrial business park Retail Retail Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Primary schools Primary schools All Non-Residential Land Uses Commuting (staff) Escort Education Education Education escort Entertainment / public activity Leisure Commuting Education Education Education Education Education Education Education Fersonal business Escort Education Education escort Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure	Hotel	Holiday: base	Leisure			
Light industrial business park Retail Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Primary schools Education Education Nursery Education Education Education Commuting (staff) Escort Education Education escort Community Centre Entertainment / public activity Leisure Education Education Education Education Fersonal business Personal business Personal business Sports pavilion Sport: participate Leisure	Commercial business in hubs	Commuting / Business	Commuting			
Retail Shopping Shopping Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Commercial business park	Commuting / Business	Commuting			
Business Personal business Personal business Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Escort Education Education Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Light industrial business park	Commuting / Business	Commuting			
Café / Restaurant Entertainment / public activity Leisure Pub / Takeaway Entertainment / public activity Leisure Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Retail	Shopping	Shopping			
Pub / Takeaway Secondary schools Primary schools Education Education Education Education Education Nursery Education Education Education Education Commuting (staff) Commuting Escort Education Education Education Commuting Escort Education Education Education Education Education Education Education Education escort Entertainment / public activity Leisure Health Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Education Education escort Entertainment / public activity Leisure Leisure	Business	Personal business	Personal business			
Secondary schools Education Education Primary schools Education Education Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Café / Restaurant	Entertainment / public activity	Leisure			
Primary schools Rursery Education Education Education Education Commuting (staff) Escort Education Education Commuting Escort Education Education escort Entertainment / public activity Health Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Education Education escort Entertainment / public activity Leisure Personal business Personal business Education Educati	Pub / Takeaway	Entertainment / public activity	Leisure			
Nursery Education Education All Non-Residential Land Uses Commuting (staff) Commuting Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Secondary schools	Education	Education			
All Non-Residential Land Uses Commuting (staff) Escort Education Education escort Community Centre Entertainment / public activity Health Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Primary schools	Education	Education			
All Non-Residential Land Uses Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Nursery	Education	Education			
Escort Education Education escort Community Centre Entertainment / public activity Leisure Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	All Non Decidential Land Llace	Commuting (staff)	Commuting			
Health Personal business Personal business Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Ali Non-Residentiai Land Uses	Escort Education	Education escort			
Sports pavilion Sport: participate Leisure Indoor sports hall Sport: participate Leisure	Community Centre	Entertainment / public activity	Leisure			
Indoor sports hall Sport: participate Leisure	Health	Personal business	Personal business			
	Sports pavilion	Sport: participate	Leisure			
Commuting (staff) Commuting	Indoor sports hall	Sport: participate	Leisure			
All Non Decidential Land Llace	All Non Decidential Land Llane	Commuting (staff)	Commuting			
Other escort Other escort	All Non-Residential Land Uses	Other escort	Other escort			

8.5 Total Internal and External Trips by Mode

8.5.1 The mode splits in Table 30 and Table 31 were applied to the trips by purpose by land use as shown in Table 32. The resulting number of internal and external trips by mode for each assessment scenario are presented in Table 33 to Table 35. Please note that this presents the worst case trip generation scenario in terms of vehicle trips. Table 36 to Table 38 present the corresponding mode splits by assessment scenario.

8.6 Permitted Waste Facility Scenario

- 8.6.1 As mentioned in the committed/planned developments section, there is a permitted waste facility that has planning permission to be built within the west of the development site. Should this development go ahead, this would result in reduction of 800 residential homes and a primary school of the development. As a sensitivity test, the trip generation for such a scenario has been derived for the year 2044 to compare with the 8,500 homes scenario, this is shown in Table 39.
- 8.6.2 The permitted waste facility scenario would generate 3,636 and 3,354 driver trips in the AM and PM peak respectively. This compares to 3,923 and 3,649 driver trips for the 2044 8.5k homes scenario (Table 34). There is a driver trip reduction of 7% and 9% respectively for the AM and PM peak when comparing the permitted waste facility scenario to the 2044 8.5k homes scenario. This indicates that the waste facility scenario would be no worse than the 2044 8.5k scenario. No further assessment will be undertaken with regards to the permitted waste facility scenario.

Otterpool Park Transport Assessment Table 33 Internal, External and Combined Trips by Mode (2037)

		Internal Trips					External Trips					Combined						
Period	AM Peak Hour			PM Peak Hour		AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour		lour				
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D
Driver	196	36	232	85	209	294	1,052	1,258	2,310	1,105	978	2,083	1,248	1,294	2,542	1,190	1,187	2,377
Passenger	59	18	76	53	78	130	186	259	445	300	243	544	245	277	522	353	321	674
Taxi	1	0	1	0	1	1	6	7	12	5	4	9	6	7	13	5	5	10
Motorcycle	6	1	7	1	5	6	22	25	47	19	17	36	28	26	55	20	22	42
Train	0	0	0	0	0	0	45	51	96	41	39	80	45	51	96	41	39	80
Bus	56	13	69	17	42	59	106	124	230	78	69	147	161	137	298	96	111	207
Light Rail	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Bicycle	93	16	109	18	72	90	34	39	73	26	23	49	127	55	182	44	95	139
Walk	1,411	423	1,834	452	791	1,242	146	171	317	82	70	152	1,556	594	2,150	534	861	1,395
Total	1,821	507	2,328	626	1,196	1,822	1,596	1,935	3,531	1,658	1,445	3,102	3,417	2,442	5,859	2,284	2,641	4,925

Otterpool Park
Transport Assessment
Table 34 Internal, External and Combined Trips by Mode (2044 8.5k)

		Internal Trips						External Trips						Combined					
Period	AM Peak Hour			PM Peak Hour		AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		lour		
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	
Driver	261	49	309	116	281	397	1,861	1,753	3,614	1,545	1,706	3,251	2,122	1,801	3,923	1,661	1,987	3,649	
Passenger	80	24	104	72	106	178	283	348	630	406	360	766	363	372	734	478	465	944	
Taxi	1	0	1	0	1	1	10	9	19	7	8	15	11	9	20	7	9	16	
Motorcycle	8	2	10	2	7	8	37	35	72	27	30	57	46	37	82	28	37	65	
Train	0	0	0	0	0	0	86	72	158	59	74	133	86	72	158	59	74	133	
Bus	74	18	92	24	56	80	167	169	336	109	116	224	241	187	428	132	172	305	
Light Rail	0	0	0	0	0	0	1	1	2	1	1	2	1	1	2	1	1	2	
Bicycle	123	22	145	24	96	120	56	54	110	36	41	76	179	76	255	60	136	197	
Walk	1,915	577	2,492	618	1,072	1,691	209	230	438	112	109	221	2,124	807	2,930	730	1,181	1,911	
Total	2,463	691	3,154	857	1,618	2,475	2,709	2,670	5,380	2,301	2,444	4,746	5,172	3,361	8,533	3,158	4,063	7,221	

Otterpool Park Transport Assessment Table 35 Internal, External and Combined Trips by Mode (2044 10k)

		Internal Trips						External Trips						Combined					
Period	AM Peak Hour			PM Peak Hour		AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		our		
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	
Driver	293	54	346	131	318	449	1,933	1,911	3,843	1,686	1,798	3,484	2,225	1,964	4,189	1,816	2,117	3,933	
Passenger	91	27	118	81	119	200	299	385	685	450	394	844	390	412	802	531	513	1,044	
Taxi	1	0	1	0	1	1	10	10	20	8	8	16	11	10	21	8	9	17	
Motorcycle	9	2	11	2	7	9	39	38	77	29	32	61	48	40	88	31	39	70	
Train	0	0	0	0	0	0	88	78	166	64	77	140	88	78	166	64	77	140	
Bus	83	20	103	27	64	91	175	186	361	119	123	242	258	205	464	146	187	333	
Light Rail	0	0	0	0	0	0	1	1	2	1	1	2	1	1	2	1	1	2	
Bicycle	137	24	162	27	109	136	58	59	117	39	43	82	196	83	279	66	151	218	
Walk	2,139	638	2,777	694	1,213	1,907	221	253	475	124	118	241	2,360	891	3,251	818	1,330	2,148	
Total	2,754	764	3,518	962	1,831	2,793	2,825	2,921	5,745	2,518	2,594	5,112	5,579	3,685	9,263	3,480	4,425	7,906	

Table 36 Internal, External and Combined AM and PM Peak Mode Splits (2037)

	Mode Split													
Period	Intern	al Trip	Extern	al Trips	Combined									
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak								
Driver	10%	16%	65%	67%	43%	48%								
Passenger	3%	7%	13%	18%	9%	14%								
Taxi	0%	0%	0%	0%	0%	0%								
Motorcycle	0%	0%	1%	1%	1%	1%								
Train	0%	0%	3%	3%	2%	2%								
Bus	3%	3%	7%	5%	5%	4%								
Light Rail	0%	0%	0%	0%	0%	0%								
Bicycle	5%	5%	2%	2%	3%	3%								
Walk	79%	68%	9%	5%	37%	28%								
Total	100%	100%	100%	100%	100%	100%								

Table 37 Internal, External and Combined AM and PM Peak Mode Splits (2044 8.5k)

Period	Mode Split													
	Intern	al Trip	Extern	al Trips	Combined									
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak								
Driver	10%	16%	67%	69%	46%	51%								
Passenger	3%	7%	12%	16%	9%	13%								
Taxi	0%	0%	0%	0%	0%	0%								
Motorcycle	0%	0%	1%	1%	1%	1%								
Train	0%	0%	3%	3%	2%	2%								
Bus	3%	3%	6%	5%	5%	4%								
Light Rail	0%	0%	0%	0%	0%	0%								
Bicycle	5%	5%	2%	2%	3%	3%								
Walk	79%	68%	8%	5%	34%	26%								
Total	100%	100%	100%	100%	100%	100%								

Table 38 Internal, External and Combined AM and PM Peak Mode Splits (2044 10k)

		Mode Split													
Period	Intern	al Trip	Extern	al Trips	Combined										
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak									
Driver	10%	16%	67%	68%	45%	50%									
Passenger	3%	7%	12%	17%	9%	13%									
Taxi	0%	0%	0%	0%	0%	0%									
Motorcycle	0%	0%	1%	1%	1%	1%									
Train	0%	0%	3%	3%	2%	2%									
Bus	3%	3%	6%	5%	5%	4%									
Light Rail	0%	0%	0%	0%	0%	0%									
Bicycle	5%	5%	2%	2%	3%	3%									
Walk	79%	68%	8%	5%	35%	27%									
Total 100%		100%	100%	100%	100%	100%									

Otterpool Park
Transport Assessment
Table 39 Internal, External and Combined Trips by Mode (2044 – Permitted Waste Facility Scenario)

		Internal Trips						External Trips						Combined					
Period	AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		lour	
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	
Driver	252	44	295	105	267	372	1,814	1,527	3,341	1,343	1,639	2,982	2,065	1,570	3,636	1,448	1,907	3,354	
Passenger	74	22	95	65	97	161	270	312	582	363	332	695	344	334	678	428	428	856	
Taxi	1	0	1	0	1	1	9	8	17	6	8	14	10	8	19	6	8	14	
Motorcycle	8	1	10	2	6	8	36	31	67	23	29	52	44	32	76	25	35	60	
Train	0	0	0	0	0	0	84	62	146	50	73	123	84	62	146	50	73	123	
Bus	70	16	86	22	53	75	161	151	312	95	110	205	231	166	398	116	164	280	
Light Rail	0	0	0	0	0	0	1	1	2	1	1	2	1	1	2	1	1	2	
Bicycle	119	20	139	22	93	115	54	48	102	31	39	70	173	67	241	53	132	185	
Walk	1,757	517	2,274	556	996	1,552	199	207	407	99	102	201	1,956	725	2,681	655	1,097	1,753	
Total	2,281	620	2,900	771	1,513	2,284	2,629	2,346	4,975	2,012	2,332	4,344	4,910	2,965	7,876	2,782	3,846	6,628	

9 Development Trip Distribution

9.1 Introduction

9.1.1 Discussions relating to the method for the distribution of trips were held with Kent County Council, Folkestone & Hythe District Council and Highways England (now NH) between July 2017 and March 2018. The approved method utilises a combination of gravity modelling and a VISUM model. This Chapter summarises the method used for the distribution of internal and external trips.

9.2 Vehicle Trip Distribution

External vehicle trip distribution

- 9.2.1 External vehicle trips generated by the Otterpool Park development have been distributed by identifying off-site origins and destinations (ODs) that are expected to attract/generate trips and then using a gravity modelling approach to determine the number of trips that are expected to route to/from the ODs from each of the on-site development zones. The route the trips are expected to take on the network is then determined through use of a VISUM model.
- 9.2.2 The gravity model method assumes that the number of trips routing to/from an OD declines with increasing distances and time of travel (deterrence functions) but is positively correlated with the size of the attractor/generator at the OD.
- 9.2.3 Separate gravity models have been developed to distribute work-related and non-work trips between the site and primary off-site locations. A total of four gravity distribution models were developed, as follows:
 - 1. Distribution of non-work trips made by Otterpool Park residents to/from off-site ODs and off-site residents to/from on-site non-work land uses;
 - 2. Distribution of commuter trips made by Otterpool Park residents to/from off-site ODs;
 - Distribution of commuter trips made by off-site residents to/from the Otterpool Park Business park;
 - 4. Distribution of commuter trips made by off-site residents to/from the Otterpool Park Business hubs and other employment land uses.
- 9.2.4 For the work trip gravity models, the activity is represented by Census 2011 origin/destination data (i.e., the number of incoming/outgoing commuter vehicle trips), while the activity for non-work trips is represented by the resident population of the location. For the purposes of the gravity model, the relationship between the number of trips attracted to a location and the scale of activity is linear assuming all other factors (i.e., distance, cost) are equal.
- 9.2.5 All gravity models also utilise a value of time which represents the travel time between the site and the location on the highway network. The method for calculating the deterrence function by which the gravity models were created along with the input assumptions proposed is described in more detail in the technical note⁹ contained in Appendix Q.
- 9.2.6 The distribution of development vehicle flows between the site and a number of off-site ODs from the gravity models has been input to a VISUM model, which has been used to assign the development flow on the network and identify the likely future routing of traffic taking into account background traffic growth as well as Otterpool Park development traffic. The VISUM model area covers a variety of route

⁹ Otterpool Park Method for the Distribution of External Vehicle Trips

choice, including the choice between the M20 or other A-class roads to the east and west, and has been validated against the observed turning counts and journey time captured on site. The VISUM analysis will determine the volume of traffic on the route network within the modelling study area. The proposed extent of the VISUM model is shown in the technical note in Appendix Q.

9.2.7 Table 40 to Table 42 present the resulting number of AM and PM peak development trips on the key roads in the study area.

Table 40 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2037)

	Number of Vehicles										
Link Name	Į.	M Peak Hou	ır	P	M Peak Hou	ır					
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way					
B2067 Otterpool Lane	45	47	92	47	49	96					
A20 Ashford Road b/w Otterpool Lane & Newingreen	201	142	343	172	118	290					
Otterpool Avenue	212	441	653	297	381	678					
old A20 Ashford Road at Newingreen	244	137	381	74	331	405					
A20 Ashford Road b/w Newingreen & M20	628	292	920	386	587	973					
A20 Ashford Road at Barrow Hill	176	149	325	117	204	321					
Aldington Road b/w Otterpool Lane & Stone Street	81	44	125	38	87	125					
Stone Street	58	36	94	43	61	104					
B2067 Aldington Road west of Otterpool Lane	4	5	9	4	4	8					
Lympne Hill	92	115	207	106	97	203					
B2068 Stone Street	22	18	40	19	21	40					
M20 east of J11	354	450	804	428	381	809					
M20 west of J11	83	39	122	104	70	174					
Cheriton Road	107	59	166	91	75	166					
A261 Hythe Road	68	45	113	54	45	99					
A259 Military Road	61	-	61	50	-	50					
A259 Prospect Road	29	24	53	23	32	55					
Swan Lane	6	5	11	5	5	10					
A20 Hythe Road west of Swan Lane	170	144	314	112	199	311					
A2070 Kennington Road	27	19	46	23	29	52					
A262 Hythe Road	25	18	43	22	28	50					
A260 Spitfire Way	7	6	13	6	6	12					
A260 Canterbury Road	0	42	42	0	47	47					
Alkham Valley Road	42	0	42	47	0	47					
Nackington Road	19	8	27	10	18	28					
Old Dover Road	4	7	11	7	4	11					

Table 41 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2044 8.5k)

	Number of Vehicles										
Link Name	A	M Peak Hou	ır	P	M Peak Hou	ır					
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way					
B2067 Otterpool Lane	75	67	142	76	80	156					
A20 Ashford Road b/w Otterpool Lane & Newingreen	300	154	454	233	196	429					
Otterpool Avenue	278	623	901	388	469	857					
old A20 Ashford Road at Newingreen	285	158	443	92	413	505					
A20 Ashford Road b/w Newingreen & M20	925	382	1,307	482	848	1,330					
A20 Ashford Road at Barrow Hill	274	194	468	177	329	506					
Aldington Road b/w Otterpool Lane & Stone Street	127	62	189	48	146	194					
Stone Street	131	41	172	47	138	185					
B2067 Aldington Road west of Otterpool Lane	8	7	15	6	8	14					
Lympne Hill	175	162	337	150	180	330					
B2068 Stone Street	31	33	64	34	29	63					
M20 east of J11	658	632	1,290	602	690	1,292					
M20 west of J11	81	118	199	181	48	229					
Cheriton Road	151	107	258	161	105	266					
A261 Hythe Road	97	79	176	92	57	149					
A259 Military Road	87	-	87	88	-	88					
A259 Prospect Road	43	41	84	42	47	89					
Swan Lane	9	10	19	10	8	18					
A20 Hythe Road west of Swan Lane	265	184	449	166	321	487					
A2070 Kennington Road	36	30	66	35	40	75					
A262 Hythe Road	34	28	62	33	38	71					
A260 Spitfire Way	10	12	22	12	9	21					
A260 Canterbury Road	0	80	80	0	67	67					
Alkham Valley Road	80	0	80	67	0	67					
Nackington Road	26	14	40	16	25	41					
Old Dover Road	6	10	16	10	7	16					

Table 42 AM and PM Peak Otterpool Park Development Trips on Key Roads in the Study Area (2044 10k)

	Number of Vehicles										
Link Name	ļ ,	M Peak Ho	ur	P	M Peak Hou	ır					
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way					
B2067 Otterpool Lane	78	75	153	81	89	170					
A20 Ashford Road b/w Otterpool Lane & Newingreen	296	159	455	233	211	444					
Otterpool Avenue	274	611	885	384	469	853					
old A20 Ashford Road at Newingreen	280	154	434	92	406	498					
A20 Ashford Road b/w Newingreen & M20	911	379	1,290	482	839	1,321					
A20 Ashford Road at Barrow Hill	267	192	459	176	323	499					
Aldington Road b/w Otterpool Lane & Stone Street	124	66	190	48	144	193					
Stone Street	131	43	174	48	140	188					
B2067 Aldington Road west of Otterpool Lane	8	7	15	6	8	13					
Lympne Hill	174	158	332	147	180	327					
B2068 Stone Street	30	33	63	34	29	63					
M20 east of J11	654	618	1,272	590	689	1,280					
M20 west of J11	83	117	200	181	51	232					
Cheriton Road	148	103	251	161	103	264					
A261 Hythe Road	95	76	171	93	56	149					
A259 Military Road	86	-	86	88	-	88					
A259 Prospect Road	42	41	83	41	45	86					
Swan Lane	9	10	19	10	7	18					
A20 Hythe Road west of Swan Lane	258	182	440	166	315	482					
A2070 Kennington Road	36	29	65	35	40	75					
A262 Hythe Road	34	27	61	33	38	71					
A260 Spitfire Way	10	12	22	12	9	21					
A260 Canterbury Road	0	79	79	0	65	65					
Alkham Valley Road	79	0	79	65	0	65					
Nackington Road	28	15	43	17	27	44					
Old Dover Road	6	11	17	11	7	18					

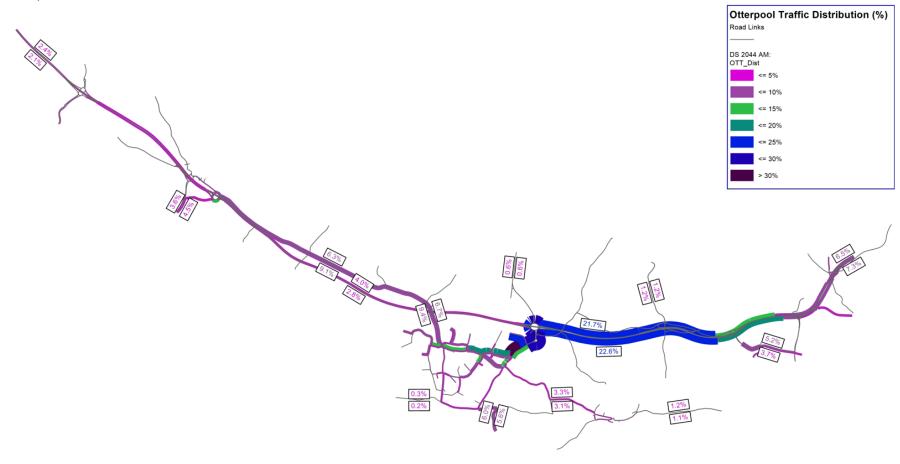


Figure 16 Otterpool Traffic Distribution on the Wider Highway Network – AM Peak (2044 8.5k)

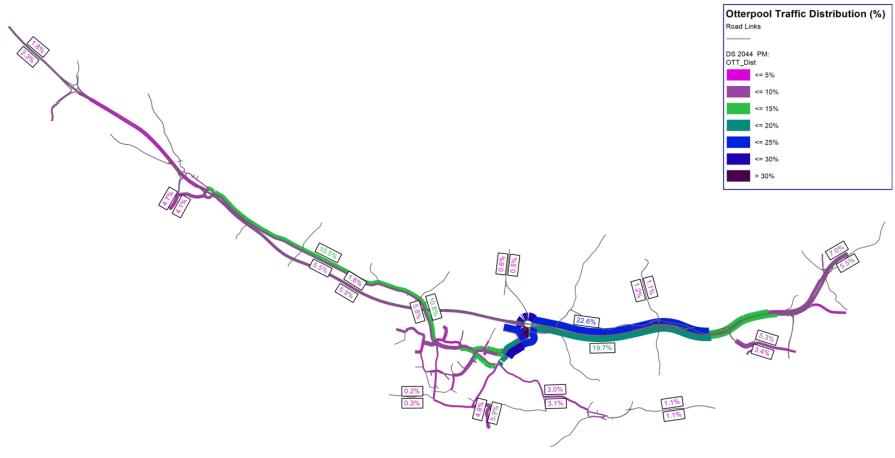


Figure 17 Otterpool Traffic Distribution on the Wider Highway Network – PM Peak (2044 8.5k)

Internal vehicle trip distribution

- 9.2.8 Internal vehicle trips are defined as vehicle trips between on-site development zones. The number of internal vehicle trips generated by each development zone was calculated as described in Chapters 7 and 8.
- 9.2.9 Internal vehicle trip generation by purpose was calculated for each development zone. The distribution of these trips was then determined by considering the likely origin/destination of trips routing into and out of each development zone. This was achieved by considering each trip purpose individually. For example, primary school education trips were distributed only to development zones that contained a primary school. The proportion of primary school trips attracted to a development zone was considered to be proportional to the number of primary schools within the development zone. Likewise, the distribution of commuting vehicle trips from one development zone was distributed to other development zones by proportion according to the number of jobs available in each development zone.
- 9.2.10 Once the number of vehicle trips between each development zone was calculated, the VISUM model was used to distribute the trips on the highway network, including the proposed internal access roads to each zone. Each development zone was represented by a zone within the VISUM and the trips between each zone was assigned to the highway network.

9.3 Trip Distribution of Non-Car Modes

External Trips

- 9.3.1 The distribution of trips made by Bus, Train, Cycle and Walk modes on the associated networks was calculated by considering the likely distribution of these trips in three categories:
 - Distribution of non-work trips made by Otterpool Park residents to/from off-site ODs and off-site residents to/from on-site non-work land uses;
 - Distribution of commuter trips made by Otterpool Park residents to/from off-site ODs;
 - Distribution of commuter trips made by off-site residents to/from Otterpool Park employment land uses.
- 9.3.2 The distribution of non-work trips was calculated using a gravity model using a similar method as was used in the gravity modelling for non-work vehicle trips. The attractor/generator function was assumed to be the population at the OD, as used in the vehicle trip gravity models. A deterrence function was calculated by considering journey time to/from the same ODs used in the assessment of vehicle trips. The journey time for Bus trips was determined using the bus journey planner on the Stagecoach website¹⁰. Journey time for Train trips was calculated using the National Rail Enquires journey planner¹¹. Where journeys required changes between services and/or modes, additional time was added to the overall journey time to account for interchange/wait times. The journey times for Walk and Cycle trips were calculated by considering the distance of the most likely direct route between ODs and calculating journey time using an average walk speed of 1.4 metres/second and Cycle speed of 15 km/hour.

¹⁰ https://www.stagecoachbus.com/

¹¹ http://www.nationalrail.co.uk/

Internal Trips

9.3.3 The distribution of internal trips by non-car modes between each development zone was calculated by first determining the likely origin/destination of trips routing into and out of each development zone using the same method as described in the distribution of internal vehicle trips. The trips where then manually assigned to the most appropriate cycle/pedestrian network and bus service that provides the most direct route between each development zone.

10 Junction Capacity Assessments

10.1 Introduction

- 10.1.1 This section presents the results of local junction capacity assessments for the three assessment years requested during scoping, as follows:
 - 2037: the end of the Folkestone & Hythe District Council Local Plan period;
 - **2044**: the forecast year of full build-out for the 8,500 homes and associated development. This represents the main assessment for the Outline Planning Application; and
 - **2044** Sensitivity Assessment: representing the year of full build-out for the 10,000 homes and associated development for the OPFM.
- 10.1.2 Two scenarios have been considered for each of the assessment years:
 - 1) Do-Minimum, which includes:
 - · committed highway improvement schemes; and
 - forecast baseline traffic flows.
 - 2) Do-Something, which includes:
 - committed highway improvement schemes;
 - highway schemes proposed for the Otterpool Park Development;
 - · forecast baseline traffic flows; and
 - Otterpool Park development traffic flows.
- 10.1.3 The results of the two scenarios were compared to determine whether the addition of the Otterpool Park development traffic resulted in a severe impact compared to the DM scenario. A severe impact is classed as occurring when a junction is found to be operating over capacity (i.e., a DoS above 90% or an RFC greater than 0.85).
- 10.1.4 Where the result of the DS assessment determined that the addition of the Otterpool Park development traffic results in a severe impact, a third scenario is assessed:
 - 3) Do-Something with mitigation, which includes:
 - committed highway improvement schemes;
 - highway schemes proposed for the Otterpool Park Development;
 - forecast baseline traffic flows;
 - Otterpool Park development traffic flows; and
 - proposed highway schemes to mitigate Otterpool Park development traffic impacts on the wider highway network.
- 10.1.5 The committed highway schemes included in the DM and DS scenarios have been described in Chapter 6. These schemes, based on information provided by Kent County Council, Highways England (now NH) and Folkestone & Hythe District Council, are summarised in Table 43.

Table 43 Committed Highway Schemes

Junction		Committed Scheme
J1 & J42	M20 Junction 10 / M20 Junction 10a	The M20 Junction 10a new, large, partially-signalised, grade separated roundabout to the east of the existing M20 Junction 10. The committed scheme involves closing off the M20 eastbound on-slip and westbound off-slip at the M20 J10 and providing them on the M20 J10a.
J11a	A20 Ashford Road / A261 Hythe Road	Minor widening on the A261 Hythe Road to increase the nearside flare length.
J24 & J25	B2064 Cheriton High Street / B2063 Risborough Lane & B2064 Cheriton High Street / A2034 Cherry Garden Avenue	Removal of existing pedestrian crossing and extension of right turning lane into Cherry Garden Avenue; improvements to The Harvey Grammar School access arrangement through implementation of a one-way system with separate entry and exit points and removal of the existing hatching and replace with an extended right turning lane
J44	Nackington Road / Old Dover Road / St Lawrence Road / The Drive	Nackington Road/ Old Dover Road and Old Dover Road/ St Lawrence Road/ The Drive proposals for the Mountfield Park development.

- 10.1.6 In addition to the committed highway schemes, the DS scenarios include a number of local highway network changes as described in Chapter 5. These are summarised as follows:
 - Upgrade of the A20 Ashford Road between the roundabout south of the M20 J11 and north of the Newingreen junction with route re-alignment west of the existing route and a 40 mph speed limit;
 - Provision of a new single carriageway 20mph strategic road (Otterpool Avenue) west of the new dual carriageway and north of the existing A20 east-west alignment;
 - Diversion of the existing A20 Ashford Road west of Newingreen to tie in to Otterpool Avenue;
 - Stopping-up of Stone Street at the junction with the A20 Ashford Road north of the junction with the A261 Hythe Road;
 - Reduction in speed limit on the A20 west of the Newingreen junction to 30mph;
 - Provision of a hierarchy of new internal access roads within the site boundary; and
 - Provision of a number of new junctions along the A20 Ashford Road and B2067 Otterpool Lane.
- 10.1.7 The locations of the new access junctions are shown in Figure 18 and described in Table 44.
- 10.1.8 The software output files for the results of the DM modelling for all junctions are contained in Appendix R along with the output files for the DS modelling and the output files for junctions where mitigation measures have been tested.

Figure 18 Locations of Proposed Junctions within Masterplan

Table 44 Proposed New Access Junctions

Junction	Assessment Year(s)	Proposed Scheme
J31	All	Signalised crossroads on A20 Ashford Road west of junction with B2067 Otterpool Lane providing access into development zones 1B and 7
J32	All	Priority junction on A20 east of junction with B2067 Otterpool Lane providing access into development zone 6
J33	All	Priority junction between Otterpool Avenue (major arm) and the diverted A20 Ashford Road (minor arm)
J34	All	Signalised crossroads between existing A20 Ashford Road and new High Street south of the Otterpool Avenue
J35	All	Signalised T-junction between Otterpool Avenue and dualled section of A20 Ashford Road
J36	All	Signalised T-junction between dualled section of A20 Ashford Road and access road to the Business Park
J38	All	Priority staggered junction between B2067 Otterpool Lane (major arm) and access into development zones 2B and 3A (minor arms)
J39	All	Signalised crossroads between the Otterpool Avenue and new High Street
J40	2044 10k only	Priority junction between B2067 Otterpool Lane (major arm) and access into development zone 9 (minor arm) to west of B2067 Otterpool Lane
J41	2044 10k only	Priority junction between B2067 Otterpool Lane (major arm) and access into development zone 9 (minor arm) to east of B2067 Otterpool Lane

10.2 Do-Minimum and Do-Something Traffic Flows

- 10.2.1 AM and PM peak hour DM and DS traffic flows through all junctions within the highway capacity assessment study area for all years of assessment are contained within Appendix U.
- 10.2.2 The method for forecasting background traffic flows was described in Chapter 0. It is worth reminding that growth rates were derived from TEMPro using the latest housing and job forecasts provided by the local authorities with deductions made to account for the number of homes and jobs that would be provided by Otterpool Park, with the resulting growth rate applied to background traffic in both the DM and DS scenarios, with Otterpool Park development traffic then added to the DS scenario. The DS scenario therefore tests significantly greater household and job growth than the DM scenario, with the assumption that the household and job creation targets for Folkstone & Hythe would not be met if the Otterpool Park development is not permitted. This means that the comparison between the DM and DS traffic flows and the results of DM and DS capacity testing as presented in this Chapter show an absolute worst case in terms of any increases in traffic flow, highway network delay and queuing in the DS scenario.
- 10.2.3 Table 20 to Table 22 presented the AM and PM peak future base (DM) traffic flows on key roads in the study area. Table 45 to Table 47 present the DM flows alongside the DS flows used in the assessment for key roads and the percentage change in flows between the two scenarios. It should be noted that the total Otterpool Park development traffic flows (previously presented in Table 40 to Table 42) is not equal to the difference between the Tables below and the Tables in Chapter 6 due to an element of dynamic re-routing of background traffic flows in the DS scenario, as calculated in the VISUM model.

Otterpool Park

Transport Assessment
Table 45 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2037)

						Number o	of Vehicles						Percentage Change in Vehicles					
			Do-Mi	nimum					Do-Soi	mething			(Do-Something – Do-Minimum)					
Link Name	1	AM Peak Ho	ur	ı	PM Peak Hoι	ır	A	AM Peak Hour			PM Peak Hour		AM Peak Hour			PM Peak Hour		ır
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way
B2067 Otterpool Lane	860	199	1,059	1,005	146	1,151	259	244	503	218	244	463	-70%	23%	-53%	-78%	67%	-60%
A20 Ashford Road b/w Otterpool Lane & Newingreen	749	276	1,025	943	248	1,191	438	313	751	374	363	738	-42%	13%	-27%	-60%	47%	-38%
old A20 Ashford Road at Newingreen	-	-	-	-	-	-	357	616	972	397	745	1,142	-	-	-	-	-	-
A20 Ashford Road b/w Newingreen & M20	719	358	1,077	978	279	1,257	368	367	735	253	599	852	-49%	3%	-32%	-74%	115%	-32%
A20 Ashford Road at Barrow Hill	1,002	1,075	2,077	989	1,205	2,194	1,908	1,378	3,286	1,613	1,846	3,460	90%	28%	58%	63%	53%	58%
Aldington Road b/w Otterpool Lane & Stone Street	681	488	1,169	679	535	1,214	571	584	1,155	541	619	1,161	-16%	20%	-1%	-20%	16%	-4%
Stone Street	60	761	821	138	726	864	252	258	510	271	217	488	320%	-66%	-38%	96%	-70%	-44%
B2067 Aldington Road west of Otterpool Lane	149	251	400	106	266	372	454	211	665	209	275	483	205%	-16%	66%	97%	3%	30%
Lympne Hill	167	122	289	120	104	224	171	127	298	124	107	232	2%	4%	3%	4%	3%	3%
B2068 Stone Street	320	223	543	201	346	547	412	338	749	307	443	750	29%	51%	38%	53%	28%	37%
M20 east of J11	517	433	950	441	513	954	539	450	989	460	533	993	4%	4%	4%	4%	4%	4%
M20 west of J11	3,185	2,889	6,074	2,931	3,452	6,383	3,556	3,349	6,905	3,355	3,844	7,199	12%	16%	14%	14%	11%	13%
Cheriton Road	3,065	2,930	5,995	2,694	3,531	6,225	3,446	3,033	6,479	3,064	3,731	6,795	12%	4%	8%	14%	6%	9%
A261 Hythe Road	860	482	1,342	817	557	1,374	1,020	545	1,565	978	615	1,592	19%	13%	17%	20%	10%	16%
A259 Military Road	693	376	1,069	914	127	1,041	801	829	1,630	974	805	1,779	16%	120%	52%	7%	534%	71%
A259 Prospect Road	1,453	-	1,453	1,349	-	1,349	1,476	-	1,476	1,247	-	1,247	2%	-	2%	-8%	-	-8%
Swan Lane	973	552	1,525	883	843	1,726	984	597	1,581	865	886	1,751	1%	8%	4%	-2%	5%	1%
A20 Hythe Road west of Swan Lane	137	171	308	224	140	364	143	176	319	229	146	375	4%	3%	4%	2%	4%	3%
A2070 Kennington Road	724	421	1,145	589	582	1,171	607	512	1,119	446	661	1,107	-16%	22%	-2%	-24%	14%	-5%
A262 Hythe Road	1,191	978	2,169	1,104	1,152	2,256	1,218	997	2,214	1,127	1,182	2,309	2%	2%	2%	2%	3%	2%
A260 Spitfire Way	588	532	1,120	818	630	1,448	614	550	1,163	828	657	1,486	4%	3%	4%	1%	4%	3%
A260 Canterbury Road	707	1,156	1,863	1,180	811	1,991	714	1,162	1,876	1,186	817	2,003	1%	1%	1%	0%	1%	1%
Alkham Valley Road	556	1,755	2,311	902	1,417	2,319	556	1,796	2,353	900	1,504	2,404	0%	2%	2%	0%	6%	4%
Nackington Road	611	425	1,036	368	618	985	630	434	1,064	377	636	1,013	3%	2%	3%	3%	3%	3%
Old Dover Road	766	467	1,232	406	685	1,091	773	470	1,243	410	692	1,102	-42%	13%	-27%	-60%	47%	-38%

Table 46 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2044 8.5k Scenario)

						Number o	of Vehicles						Percentage Change in Vehicles					
Link Nama			Do-Mi	nimum					Do-Soi	nething				(Do-S	omething	– Do-Mini	mum)	
Link Name	1	AM Peak Hou	ır	P	M Peak Hou	ır	Į.	AM Peak Hou	ır	F	PM Peak Ho	ur	A	AM Peak Hoι	ır	F	M Peak Hou	ır
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way
B2067 Otterpool Lane	860	195	1,055	1,003	166	1,169	317	267	584	299	298	597	-63%	37%	-45%	-70%	79%	-49%
A20 Ashford Road b/w Otterpool Lane & Newingreen	774	280	1,054	969	252	1,221	535	300	835	451	414	865	-31%	7%	-21%	-53%	64%	-29%
old A20 Ashford Road at Newingreen	-	-	-	-	-	-	402	786	1,188	488	847	1,335	-	-	-	-	-	-
A20 Ashford Road b/w Newingreen & M20	745	366	1,111	1,003	283	1,286	405	397	802	272	671	944	-46%	9%	-28%	-73%	137%	-27%
A20 Ashford Road at Barrow Hill	1,066	1,092	2,158	1,039	1,232	2,271	2,195	1,440	3,635	1,652	2,063	3,716	106%	32%	68%	59%	67%	64%
Aldington Road b/w Otterpool Lane & Stone Street	671	493	1,164	656	557	1,213	673	632	1,305	633	783	1,416	0%	28%	12%	-4%	41%	17%
Stone Street	54	758	812	156	721	877	301	280	581	311	324	636	457%	-63%	-28%	99%	-55%	-28%
B2067 Aldington Road west of Otterpool Lane	137	263	400	100	259	359	522	201	723	198	341	539	281%	-24%	81%	98%	32%	50%
Lympne Hill	172	125	297	123	106	229	180	131	311	129	114	243	5%	5%	5%	5%	8%	6%
B2068 Stone Street	329	227	556	205	355	560	503	389	893	355	535	890	53%	72%	61%	73%	51%	59%
M20 east of J11	528	445	973	453	524	977	553	477	1,031	483	553	1,036	5%	7%	6%	7%	6%	6%
M20 west of J11	3,334	2,968	6,302	3,019	3,604	6,623	3,996	3,601	7,597	3,607	4,294	7,901	20%	21%	21%	19%	19%	19%
Cheriton Road	3,276	3,014	6,290	2,815	3,707	6,522	3,628	3,183	6,811	3,197	3,854	7,051	11%	6%	8%	14%	4%	8%
A261 Hythe Road	884	495	1,379	886	592	1,478	1,095	640	1,735	1,152	692	1,845	24%	29%	26%	30%	17%	25%
A259 Military Road	699	434	1,133	938	151	1,089	838	881	1,719	1,059	830	1,888	20%	103%	52%	13%	450%	73%
A259 Prospect Road	1,483	-	1,483	1,387	-	1,387	1,520	-	1,520	1,396	-	1,396	3%	-	3%	1%	-	1%
Swan Lane	997	575	1,572	907	864	1,771	1,023	626	1,649	928	937	1,865	3%	9%	5%	2%	8%	5%
A20 Hythe Road west of Swan Lane	140	176	316	230	143	373	148	186	334	240	151	391	6%	6%	6%	4%	5%	5%
A2070 Kennington Road	717	428	1,145	568	609	1,177	711	562	1,273	534	831	1,365	-1%	31%	11%	-6%	36%	16%
A262 Hythe Road	1,252	1,007	2,259	1,137	1,202	2,339	1,294	1,037	2,331	1,176	1,243	2,420	3%	3%	3%	3%	3%	3%
A260 Spitfire Way	615	555	1,170	856	658	1,514	649	583	1,232	878	696	1,574	6%	5%	5%	3%	6%	4%
A260 Canterbury Road	722	1,191	1,913	1,215	828	2,043	732	1,202	1,934	1,226	837	2,064	1%	1%	1%	1%	1%	1%
Alkham Valley Road	571	1,810	2,381	920	1,457	2,377	571	1,896	2,467	917	1,611	2,528	0%	5%	4%	0%	11%	6%
Nackington Road	646	450	1,096	388	651	1,039	672	464	1,136	404	676	1,080	4%	3%	4%	4%	4%	4%
Old Dover Road	804	486	1,290	421	717	1,139	814	492	1,306	428	727	1,155	-42%	13%	-27%	-60%	47%	-38%

Otterpool Park
Transport Assessment
Table 47 Summary of Change in AM and PM Peak Traffic Flows between DM and DS Scenarios on Key Roads (2044 10k Scenario)

		Number of Vehicles									Percentage Change in Vehicles							
Cot Name			Do-Mi	nimum					Do-Soi	mething			(Do-Something – Do-Minimum)					
Link Name	A	AM Peak Hour PM			PM Peak Ho	M Peak Hour		AM Peak Hour		PM Peak Hour		AM Peak Hour		ır	PM Peak Hour		ur	
	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way	Nb / Eb	Sb / Wb	2-Way
B2067 Otterpool Lane	748	363	1,111	986	281	1,267	441	391	832	270	683	954	-41%	8%	-25%	-73%	143%	-25%
A20 Ashford Road b/w Otterpool Lane & Newingreen	1,057	1,087	2,144	1,025	1,214	2,239	2,237	1,454	3,691	1,686	2,115	3,801	112%	34%	72%	65%	74%	70%
old A20 Ashford Road at Newingreen	655	494	1,149	657	552	1,209	696	643	1,338	648	802	1,449	6%	30%	16%	-1%	45%	20%
A20 Ashford Road b/w Newingreen & M20	59	752	811	158	716	874	330	301	631	322	403	725	459%	-60%	-22%	104%	-44%	-17%
A20 Ashford Road at Barrow Hill	139	238	377	106	249	355	528	208	736	202	399	601	280%	-13%	95%	90%	60%	69%
Aldington Road b/w Otterpool Lane & Stone Street	169	123	292	121	105	226	177	130	307	127	112	240	5%	6%	5%	5%	7%	6%
Stone Street	324	225	549	203	350	553	503	401	904	366	537	903	55%	78%	65%	80%	53%	63%
B2067 Aldington Road west of Otterpool Lane	523	438	961	446	518	964	550	471	1,021	477	549	1,026	5%	8%	6%	7%	6%	6%
Lympne Hill	3,290	2,965	6,255	3,005	3,561	6,566	3,971	3,653	7,623	3,647	4,282	7,928	21%	23%	22%	21%	20%	21%
B2068 Stone Street	3,233	3,023	6,256	2,811	3,658	6,469	3,583	3,190	6,773	3,204	3,818	7,022	11%	6%	8%	14%	4%	9%
M20 east of J11	874	487	1,361	847	571	1,418	1,094	635	1,730	1,140	691	1,831	25%	30%	27%	35%	21%	29%
M20 west of J11	715	414	1,129	929	146	1,075	844	857	1,701	1,049	829	1,878	18%	107%	51%	13%	468%	75%
Cheriton Road	1,466	-	1,466	1,365	-	1,365	1,512	-	1,512	1,378	-	1,378	3%	-	3%	1%	-	1%
A261 Hythe Road	983	561	1,544	893	849	1,742	1,012	610	1,622	907	919	1,826	3%	9%	5%	2%	8%	5%
A259 Military Road	138	173	311	226	141	367	148	184	331	236	150	386	7%	6%	7%	5%	6%	5%
A259 Prospect Road	701	429	1,130	570	602	1,172	732	574	1,306	550	848	1,399	4%	34%	16%	-3%	41%	19%
Swan Lane	1,250	1,010	2,260	1,139	1,202	2,341	1,297	1,040	2,337	1,182	1,246	2,427	4%	3%	3%	4%	4%	4%
A20 Hythe Road west of Swan Lane	614	557	1,171	858	657	1,515	651	585	1,237	883	699	1,582	6%	5%	6%	3%	6%	4%
A2070 Kennington Road	713	1,168	1,881	1,191	815	2,006	724	1,181	1,904	1,204	825	2,029	1%	1%	1%	1%	1%	1%
A262 Hythe Road	563	1,782	2,345	906	1,433	2,339	563	1,863	2,426	903	1,601	2,504	0%	5%	3%	0%	12%	7%
A260 Spitfire Way	1,230	212	1,442	1,222	157	1,379	1,311	212	1,524	1,294	126	1,420	7%	0%	6%	6%	-20%	3%
A260 Canterbury Road	748	363	1,111	986	281	1,267	441	391	832	270	683	954	-41%	8%	-25%	-73%	143%	-25%
Alkham Valley Road	1,057	1,087	2,144	1,025	1,214	2,239	2,237	1,454	3,691	1,686	2,115	3,801	112%	34%	72%	65%	74%	70%
Nackington Road	646	450	1,096	388	651	1,039	675	465	1,139	405	678	1,084	4%	3%	4%	4%	4%	4%
Old Dover Road	804	486	1,290	421	717	1,139	815	492	1,307	428	728	1,156	-42%	13%	-27%	-60%	47%	-38%

10.3 Overview of Junction Capacity Assessment Results

- 10.3.1 An analysis of how existing junctions are operating in the 2018 baseline scenario was provided in Chapter 4.4 Figure 19 Figure 24 present an overview of the performance of the assessed junction in the future year scenarios.
- 10.3.2 The figures are colour coded to indicate the modelled performance of the junction on a Red Amber Green scale, where Red indicates the junction is predicted to be over capacity, Amber is approaching capacity and Green indicates well within capacity, in the relevant scenario.
- 10.3.3 The subsequent section of this Chapter provides a summary analysis of all junctions modelled as part of the scope of this Transport Assessment.
- 10.3.4 While some of the differences in the results between the 2044 8.5k scenarios and the 2044 10k scenarios may seem counter-intuitive, as discussed in detailed in Chapter 6, this is due to the agreed assumption that in the 2044 8.5k scenarios a further 1.5k dwellings are provided across FHDC to meet the housing requirements. This has the effect of increasing traffic across a wider area than if all 10k dwellings are provided at Otterpool Park.

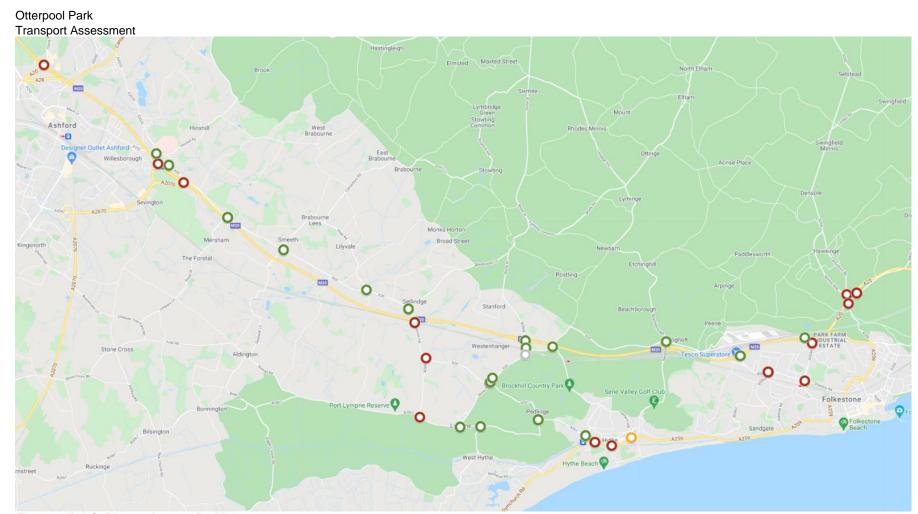


Figure 19 R.A.G. Diagram for 2037 Do-Minimum

Figure 20 R.A.G Diagram for 2037 Do-Something

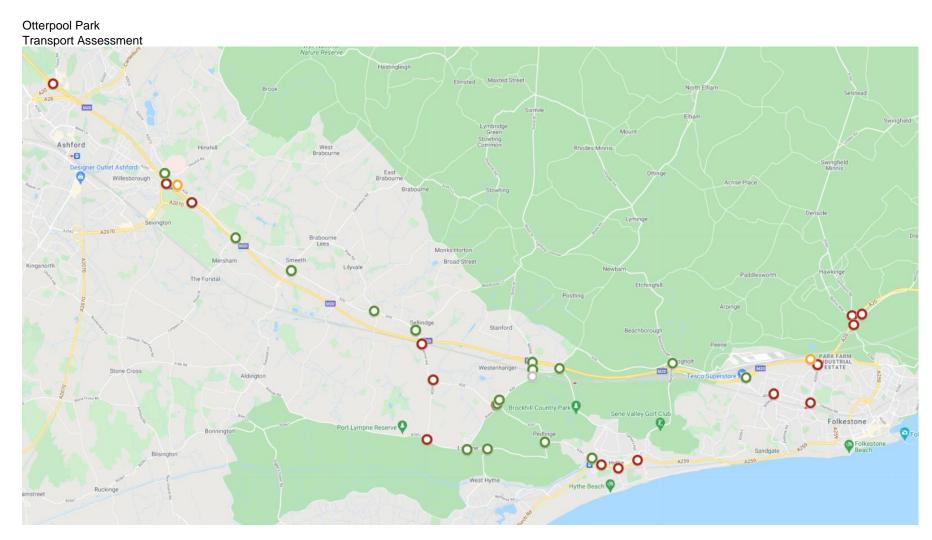


Figure 21 R.A.G. Assessment for 2044 8,500 Homes Do-Minimum Scenario

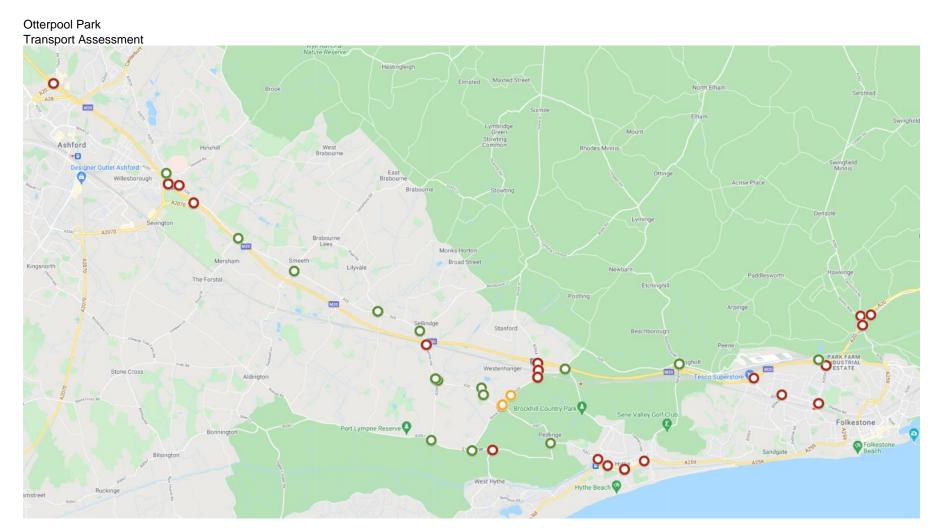


Figure 22 R.A.G. Diagram for 2044 8,500 Homes Do-Something Scenario

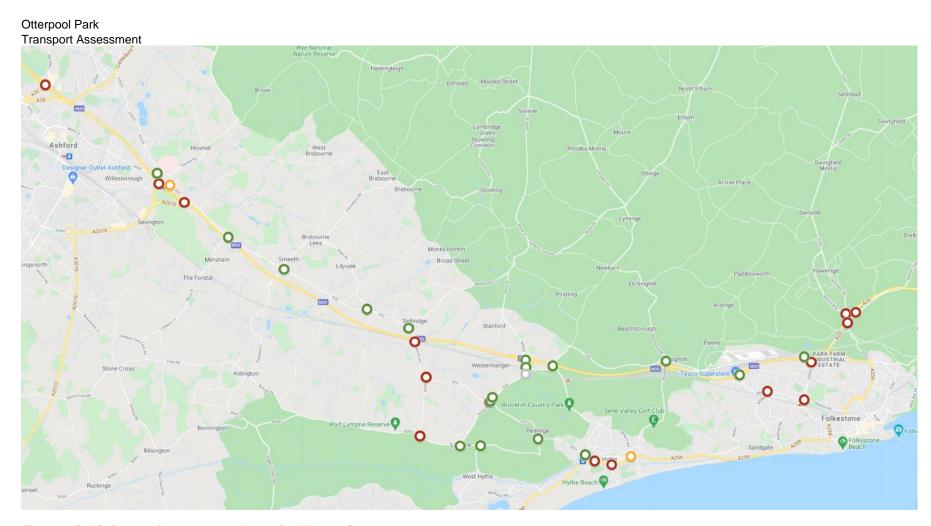


Figure 23 R.A.G. Diagram for 2044 10,000 Homes Do-Minimum Scenario

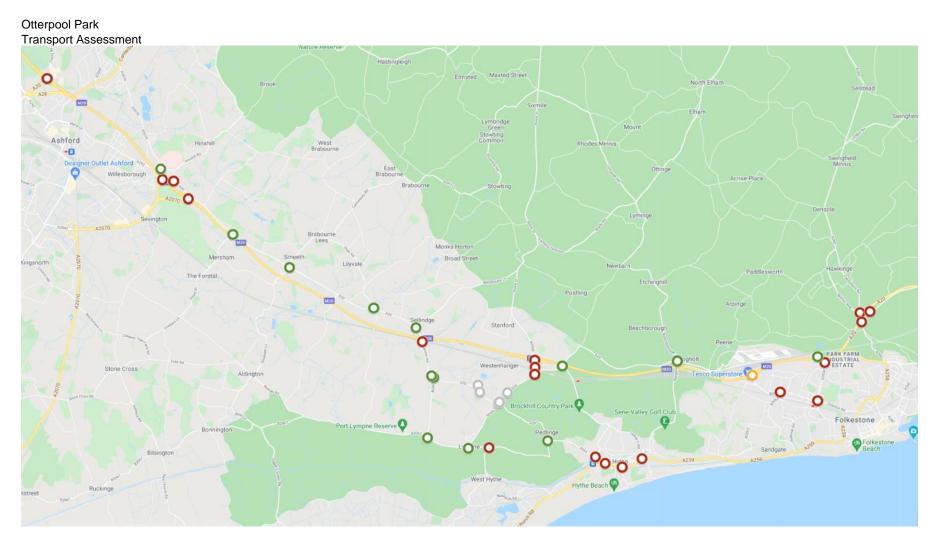


Figure 24 R.A.G Diagram 2044 10,000 Homes Do-Something Scenario

10.3.5 **J1: M20 Junction 10**

The M20 Junction 10 is a large, signalised junction, forming part of the major Lacton Interchange, providing access to the east of Ashford. To the east of this junction is the new, large, partially signalised junction the M20 Junction 10a (J42).

M20 Junction 10 has recently undergone changes through the removal of the M20 eastbound on-slip and westbound off-slip, which have been implemented on the M20 Junction 10a.

This junction is shown in Figure 25 and has been assessed in LinSig. The capacity assessment results are presented in Table 48.

Figure 25 M20 Junction 10

The junction modelling results indicates that the M20 Junction 10 is within capacity in the base year, and in all the assessed future Do-Minimum and Do-Something scenarios except for 2044 10k Do-Something scenario in the PM peak. The assessment highlights that the highest DoS is 105.4% in the 2044 10k PM in the Do-Something scenario on Bad Munstereifel Road.

Table 48 J1: M20 Junction 10 capacity assessment

		AM Peak		PM Peak			
raffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Dela per PCU (secs)	
		2018					
Kennington Road	45.8%	5.5	39.5	57.5%	7.3	42.6	
Hythe Road Southbound	61.0%	7.7	33.7	63.4%	7.8	37.7	
Hythe Road Eastbound	26.4%	0.3	4.5	31.6%	0.4	4.5	
A2070 Bad Munstereifel Road	55.4%	8.2	16.6	64.9%	10.2	19.3	
M20 Eastbound Off-Slip	51.5%	6.2	11.8	62.0%	9	13.3	
		2037 DM					
Kennington Road	53.2%	10.1	18.4	81.9%	16	44.6	
Hythe Road Southbound	62.1%	10.8	32.7	82.4%	12.6	57	
Hythe Road Eastbound	50.7%	20.7	9.9	61.3%	25.4	10.1	
A2070 Bad Munstereifel Road	49.9%	6.7	34.1	52.5%	7.8	23	
M20 Eastbound Off-Slip	70.1%	10.8	23.4	65.4%	8.8	15.7	
•	_	2037 DS					
Kennington Road	59.3%	11.6	22.8	83.2%	17.2	44	
Hythe Road Southbound	77.5%	14.3	42	82.3%	12.9	55.7	
Hythe Road Eastbound	53.5%	21.5	8.1	63.3%	26.4	10.8	
A2070 Bad Munstereifel Road	40.6%	5.7	24.6	54.7%	8.3	23.4	
M20 Eastbound Off-Slip	66.8%	10.1	22.7	60.9%	7.9	15.5	
		2044 8.5K D					
Kennington Road	55.5%	10.7	18.8	85.9%	18	48.1	
Hythe Road Southbound	72.5%	13.5	36.7	84.7%	13.3	60.1	
Hythe Road Eastbound	52.3%	21.5	9.9	63.5%	26.5	11	
A2070 Bad Munstereifel Road	60.1%	7.5	39.2	55.8%	8.5	25.6	
M20 Eastbound Off-Slip	73.4%	11.7	25.1	64.8%	8.7	16.1	
		2044 8.5K D	S				
Kennington Road	60.7%	11.9	23.1	89.1%	19.7	53	
Hythe Road Southbound	82.3%	16	45.8	89.7%	16.1	66.4	
Hythe Road Eastbound	55.6%	22.1	9.4	62.3%	9.4	23.2	
A2070 Bad Munstereifel Road	45.0%	6.5	25.3	65.1%	10.5	30.4	
M20 Eastbound Off-Slip	73.3%	11.5	25.6	63.6%	8.6	16.5	
		2044 10K D	M				
Kennington Road	55.5%	10.7	18.8	85.9%	18	48.1	
Hythe Road Southbound	72.5%	13.5	36.7	84.7%	13.3	60.1	
Hythe Road Eastbound	52.3%	21.5	9.9	63.5%	26.5	11	
A2070 Bad Munstereifel Road	60.1%	7.5	39.2	55.8%	8.5	25.6	
M20 Eastbound Off-Slip	73.4%	11.7	25.1	64.8%	8.7	16.1	
·		2044 10K D	S				
Kennington Road	61.0%	12.1	23.2	85.3%	18.1	46.3	
Hythe Road Southbound	81.2%	15.3	45.8	86.1%	12.8	49.8	
Hythe Road Eastbound	58.1%	12.2	28.5	62.7%	14	27.6	
A2070 Bad Munstereifel Road	66.4%	8.5	41.8	105.4%	35.7	147.3	

Otterpool Park

Transport Assessment

The A292 Hythe Road/M20 Westbound On-slip junction is located to the west of the M20 Junction 10. The capacity assessment is in Table 49. The LinSig assessment indicates that the junction operates within capacity in the base year, and 2037 Do-minimum. In all the other assessed scenarios, the junction is over capacity. The highest Dos is 109% in 2044 8.5k Do-Something in the PM peak.

Given the modelling indicating capacity issues in the Do-Something scenarios, this junction is discussed in further detail in Section 10.4.

Table 49 J1: A292 Hythe Road/M20 Westbound On-slip junction capacity assessment

		AM Peak			PM Peak	
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)
		2018				
A292 Hythe Road Road	65.9%	6.6	42.6	69.0%	6	49.2
M20 Westbound On-Slip	67.0%	14.1	11.1	69.3%	13.6	8.3
		2037 DM				
A292 Hythe Road Road	80.9%	9.3	48.4	86.1%	10.9	50.2
M20 Westbound On-Slip	81.3%	22.8	18.6	87.3%	23.9	18.6
		2037 DS				
A292 Hythe Road Road	84.4%	10.3	49.7	90.3%	12.6	55.2
M20 Westbound On-Slip	85.0%	24.4	18.5	90.5%	25.6	22.3
		2044 8.5K D	M			
A292 Hythe Road Road	78.6%	8.8	47.2	89.3%	12.2	53.8
M20 Westbound On-Slip	77.9%	22.1	17.3	90.7%	26.9	23.4
		2044 8.5K D	S			
A292 Hythe Road Road	92.5%	13.9	60.6	109.0%	69.9	227.9
M20 Westbound On-Slip	91.8%	29	25.7	107.8%	94.2	183.7
		2044 10K D	М			
A292 Hythe Road Road	78.6%	8.8	47.2	89.3%	12.2	53.8
M20 Westbound On-Slip	77.9%	22.1	17.3	90.7%	26.9	23.4
		2044 10K D	S			
A292 Hythe Road Road	92.5%	13.9	59.5	109.9%	70.5	232.2
M20 Westbound On-Slip	93.4%	29.8	25.2	108.3%	90.7	177.9

10.3.6 **J2: M20 Junction 11**

M20 Junction 11 is the Westenhanger Interchange and is the main gateway to the Otterpool Park site from the wider highway network. The junction was assessed using the ARCADY module in Junctions9, and modelled as a five-arm roundabout as shown in Figure 26. The assessment results can be found in Table 50.

Figure 26 M20 Junction 11

The junction appears to be within capacity in the 2018 Base Year scenario, as well as in all Do-Minimum scenarios. The assessment indicates that the junction would operate over capacity in all the assessed Do-Something scenarios in both the AM and PM peak hours. The 2044 8.5k Do-Something scenario has the highest RFC value of 1.51 in the PM peak on the M20 Off-slip (eastbound).

Given this junction forms the main access to Otterpool Park from the strategic road network, and the modelling indicating capacity issues in the Do-Something scenarios, this junction and potential mitigation is discussed in further detail in Section 10.4.

Table 50 J2: M20 Junction 11 capacity assessment

		AM Peak		PM Peak				
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)		
		2018						
M20 OffSlip Westbound	0.36	0.5	3.02	0.35	0.35	3.62		
A20 Ashford Road	0.44	0.8	2.63	0.36	0.36	2.25		
Services	0.15	0.2	4.02	0.13	0.13	3.4		
M20 OffSlip Eastbound	0.29	0.4	3.64	0.47	0.47	4.57		
B2068	0.25	0.3	3.36	0.32	0.32	4.29		
		2037 DM						
M20 OffSlip Westbound	0.58	1.40	5.75	0.59	1.40	6.52		
A20 Ashford Road	0.44	1.40	3.66	0.51	1.00	3.03		
Services	0.15	0.20	5.02	0.16	0.20	4.19		
M20 OffSlip Eastbound	0.29	1.60	7.67	0.74	2.70	10.69		
B2068	0.25	0.70	5.38	0.57	1.30	8.45		
		2037 DS						
M20 OffSlip Westbound	0.88	6.40	19.82	0.96	15.10	46.36		
A20 Ashford Road	0.94	12.60	20.64	0.84	5.10	9.07		
Services	0.31	0.50	10.10	0.24	0.30	7.14		
M20 OffSlip Eastbound	0.95	11.50	52.51	1.17	86.80	244.90		
B2068	0.63	1.70	12.42	0.85	5.00	32.26		
	1	2044 8.5K D	<u> </u>					
M20 OffSlip Westbound	0.60	1.50	6.20	0.62	1.60	7.24		
A20 Ashford Road	0.63	1.70	4.08	0.53	1.10	3.22		
Services	0.20	0.30	5.38	0.17	0.20	4.36		
M20 OffSlip Eastbound	0.64	1.70	8.40	0.78	3.40	12.68		
B2068	0.44	0.80	5.70	0.60	1.50	9.39		
52000	0.44	2044 8.5K E		0.00	1.00	3.00		
M20 OffSlip Westbound	1.08	70.80	146.96	0.98	19.10	50.48		
A20 Ashford Road	1.03	59.80	76.21	1.00	33.10	47.98		
Services	0.37	0.60	12.48	0.33	0.50	10.57		
	1.16	65.80	231.89	1.51	193.40	698.91		
M20 OffSlip Eastbound B2068	0.74	2.70	18.85	0.96	11.50	71.90		
52000	0.74	2044 10K D	<u> </u>	0.90	11.50	71.90		
MOO Office We although	1 0.50			0.00	4.50	0.70		
M20 OffSlip Westbound	0.59	1.50	6.09	0.60	1.50	6.79		
A20 Ashford Road	0.62	1.60	3.99	0.53	1.10	3.16		
Services	0.19	0.20	5.31	0.16	0.20	4.32		
M20 OffSlip Eastbound	0.63	1.70	8.27	0.76	3.00	11.61		
B2068	0.43	0.80	5.61	0.58	1.40	8.89		
		2044 10K D				1 .		
M20 OffSlip Westbound	1.08	65.70	138.26	0.96	15.50	42.15		
A20 Ashford Road	1.01	45.60	61.25	0.99	30.50	44.82		
Services	0.36	0.60	12.32	0.32	0.50	10.47		
M20 OffSlip Eastbound	1.15	64.80	225.41	1.48	184.20	657.17		
B2068	0.72	2.50	17.98	0.95	10.60	67.65		

10.3.7 J3: A20 Ashford Road / Swan Lane

The A20 Ashford Road / Swan Lane junction is a priority crossroads located in Sellindge, approximately 400m north of J27 Barrow Hill. A20 Ashford Road forms the main road through the junction, while Swan Lane to the north and a private access to the south form the give way arms of the junction.

The junction is presented in Figure 27, and has been assessed in the PICADY module of Junctions9. The junction assessment results are shown in Table 51.

Figure 27 A20 Ashford Road / Swan Lane

The assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, and will continue to operate within capacity in the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.54 in the 2044 8.5k Do-Something scenario in the AM peak hour. This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 51 J3: A20 Ashford Road / Swan Lane capacity assessment

		AM Peak		PM Peak				
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)		
		2018						
Private Access	0.01	0.00	11.77	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.06	0.10	5.12	0.14	0.20	6.02		
Swan Lane	0.30	0.40	13.42	0.21	0.30	12.30		
		2037 DM						
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.14	0.40	4.43	0.25	0.70	5.40		
Swan Lane	0.43	0.70	21.27	0.36	0.60	20.23		
		2037 DS						
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.16	0.40	4.98	0.25	0.60	6.46		
Swan Lane	0.46	0.80	24.07	0.37	0.60	21.20		
		2044 8.5K D	M					
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.14	0.40	4.47	0.25	0.70	5.54		
Swan Lane	0.45	0.80	22.07	0.37	0.60	20.77		
		2044 8.5K E	os					
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.19	0.60	4.77	0.32	1.00	6.74		
Swan Lane	0.54	1.10	31.24	0.47	0.90	31.57		
		2044 10K D	М					
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.13	0.30	4.50	0.24	0.70	5.49		
Swan Lane	0.44	0.80	21.33	0.37	0.60	20.46		
		2044 10K D	S					
Private Access	0.00	0.00	0.00	0.00	0.00	0.00		
A20 Ashford Road Westbound	0.19	0.60	4.72	0.33	1.00	6.70		
Swan Lane	0.54	1.10	32.54	0.48	0.90	33.29		

10.3.8 J4: A20 Ashford Road / Stone Hill

The A20 Ashford Road / Stone Hill is a priority T-junction. It is located to the west of J3 A20 Ashford Road/Swan Lane. The junction is presented in Figure 28, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 52.

Figure 28 A20 Ashford Road / Stone Hill

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The highest RFC is 0.41 on Stone Hill in the 2044 8.5k Do-Something scenario in the AM peak hour. This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 52 J4: A20 Ashford Road / Stone Hill capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Stone Hill	0.24	0.30	12.17	0.14	0.20	11.26	
A20 Ashford Road Eastbound	0.00	0.00	5.53	0.01	0.00	4.81	
		2037 DM					
Stone Hill	0.35	0.5	20.44	0.21	0.3	16.63	
A20 Ashford Road Eastbound	0	0	0	0.03	0	4.48	
		2037 DS					
Stone Hill	0.35	0.5	20.29	0.2	0.2	15.49	
A20 Ashford Road Eastbound	0.01	0	6.74	0.03	0	4.21	
		2044 8.5K D	M				
Stone Hill	0.36	0.6	20.58	0.21	0.3	16.62	
A20 Ashford Road Eastbound	0	0	0	0.03	0	4.39	
		2044 8.5K E	os				
Stone Hill	0.41	0.7	25.83	0.24	0.3	19.71	
A20 Ashford Road Eastbound	0.42	0.7	26.97	0.25	0.3	20.4	
		2044 10K D	M				
Stone Hill	0.35	0.5	20.07	0.21	0.3	16.5	
A20 Ashford Road Eastbound	0	0	0	0.03	0	4.41	
		2044 10K D	S				
Stone Hill	0.42	0.7	26.97	0.25	0.3	20.4	
A20 Ashford Road Eastbound	0.01	0	6.38	0.05	0.1	3.99	

10.3.9 J5: A20 Hythe Road / Station Road / Church Road

The A20 Hythe Road / Station Road / Church Road junction is a priority crossroads in the village Smeeth, mainly surrounded by agricultural land. The junction is presented in Figure 29, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 53.

Figure 29 A0 Hythe Road / Station Road / Church Road

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.7 on Station Road in the 2044 8.5k Do-Something scenario in the PM peak hour. This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 53 J5: A20 Hythe Road / Station Road / Church Road capacity assessment

		AM Peak		PM Peak			
pproach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Station Road	0.36	0.60	12.95	0.42	0.70	14.34	
A20 Hythe Road Westbound	0.02	0.00	5.78	0.03	0.00	6.31	
Church Road	0.25	0.30	13.76	0.17	0.20	13.70	
A20 Hythe Road Eastbound	0.18	0.20	6.54	0.16	0.20	6.29	
		2037 DM					
Station Road	0.57	1.30	25.60	0.62	1.60	29.64	
A20 Hythe Road Westbound	0.02	0.00	6.34	0.04	0.00	7.23	
Church Road	0.40	0.70	24.64	0.28	0.40	23.68	
A20 Hythe Road Eastbound	0.25	0.30	8.73	0.21	0.30	7.88	
		2037 DS					
Station Road	0.53	1.10	22.44	0.56	1.30	23.51	
A20 Hythe Road Westbound	0.01	0.00	6.99	0.03	0.00	7.89	
Church Road	0.49	0.90	33.46	0.30	0.40	27.08	
A20 Hythe Road Eastbound	0.27	0.40	8.69	0.22	0.30	7.52	
		2044 8.5K I	OM				
Station Road	0.59	1.40	27.22	0.66	1.80	32.84	
A20 Hythe Road Westbound	0.02	0.00	6.46	0.04	0.00	7.43	
Church Road	0.44	0.80	27.05	0.30	0.40	25.57	
A20 Hythe Road Eastbound	0.26	0.40	8.86	0.22	0.30	7.93	
		2044 8.5K I	os .				
Station Road	0.12	0.10	13.08	0.08	0.10	14.98	
A20 Hythe Road Westbound	0.01	0.00	7.45	0.03	0.00	9.13	
Church Road	0.67	1.80	64.65	0.51	1.00	59.70	
A20 Hythe Road Eastbound	0.32	0.50	9.89	0.26	0.40	8.31	
		2044 10K E	OM				
Station Road	0.59	1.40	26.92	0.66	1.80	32.58	
A20 Hythe Road Westbound	0.02	0.00	6.46	0.04	0.00	7.41	
Church Road	0.44	0.80	26.70	0.30	0.40	25.49	
A20 Hythe Road Eastbound	0.26	0.30	8.77	0.22	0.30	7.97	
		2044 10K E	os				
Station Road	0.67	1.90	37.49	0.72	2.40	42.68	
A20 Hythe Road Westbound	0.01	0.00	7.52	0.03	0.00	9.31	
Church Road	0.70	2.10	74.37	0.56	1.20	71.41	
A20 Hythe Road Eastbound	0.33	0.50	10.10	0.27	0.40	8.45	

10.3.10 **J6: A20 Hythe Road / Mersham**

The A20 Hythe Road / Mersham is a priority T-junction located to the north-east of Mersham. The junction is presented in Figure 30, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 54.

Figure 30 A20 Hythe Road / Mersham

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.37 in the 2044 8.5k Do-Something and 2044 10k Do-Something scenario in the AM peak hour.

This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 54 J6: A20 Ashford Road / Mersham capacity assessment

		AM Peak			PM Peak	
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)
		2018				
Mersham	0.21	0.3	8.19	0.12	0.1	6.92
A20 Hythe Road Eastbound	0.19	0.2	8.25	0.18	0.2	7.56
		2037 DM				
Mersham	0.32	0.5	11.85	0.18	0.2	8.59
A20 Hythe Road Eastbound	0.29	0.4	11.62	0.28	0.4	10.1
		2037 DS				
Mersham	0.31	0.5	11.64	0.17	0.2	8.19
A20 Hythe Road Eastbound	0.28	0.4	11.32	0.27	0.4	9.55
		2044 8.5K D	M			
Mersham	0.34	0.5	12.34	0.19	0.2	8.7
A20 Hythe Road Eastbound	0.31	0.4	11.85	0.29	0.4	10.28
		2044 8.5K E)S			
Mersham	0.37	0.6	14.14	0.2	0.2	9.04
A20 Hythe Road Eastbound	0.33	0.5	13.04	0.3	0.4	10.64
		2044 10K D	M			
Mersham	0.34	0.5	12.24	0.19	0.2	8.72
A20 Hythe Road Eastbound	0.3	0.4	11.73	0.3	0.4	10.34
		2044 10K D	S			
Mersham	0.38	0.6	14.56	0.2	0.2	9.19
A20 Hythe Road Eastbound	0.33	0.5	13.24	0.31	0.4	10.85

10.3.11 J7a: A2070 Kennington Road / The Street

The A2070 Kennington Road / The Street is a staggered priority junction. It is located to the north of M20 Junction 10, connected via A2070 Kennington Road. The junction is presented in Figure 31, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 55.

Figure 31 A2070 Kennington Road / The Street

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.58 on The Street (westbound) in the 2044 8.5k Do-Something scenario in the AM peak hour. This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 55 J7a: A2070 Kennington Road / The Street capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
The Street Eastbound	0.00	0.00	0.00	0.01	0.00	7.81	
A2070 Kennington Road Northbound	0.24	0.30	8.27	0.29	0.40	9.72	
The Street Westbound	0.13	0.10	10.26	0.09	0.10	8.50	
A2070 Kennington Road Southbound	0.00	0.00	7.54	0.00	0.00	6.20	
		2037 DM					
The Street Eastbound	0.06	0.10	43.31	0.03	0.00	19.80	
A2070 Kennington Road Northbound	0.24	0.30	11.63	0.34	0.50	14.62	
The Street Westbound	0.38	0.60	42.01	0.20	0.20	23.50	
A2070 Kennington Road Southbound	0.00	0.00	10.09	0.00	0.00	9.05	
		2037 DS					
The Street Eastbound	0.07	0.10	49.34	0.03	0.00	21.57	
A2070 Kennington Road Northbound	0.25	0.30	11.84	0.35	0.50	15.14	
The Street Westbound	0.42	0.70	49.20	0.23	0.40	28.00	
A2070 Kennington Road Southbound	0.00	0.00	10.31	0.00	0.00	9.20	
		2044 8.5K D	M				
The Street Eastbound	0.10	0.10	58.09	0.03	0.00	22.39	
A2070 Kennington Road Northbound	0.27	0.40	12.32	0.38	0.60	16.13	
The Street Westbound	0.49	0.90	61.87	0.29	0.40	36.04	
A2070 Kennington Road Southbound	0.00	0.00	10.55	0.00	0.00	9.22	
		2044 8.5K E	os .				
The Street Eastbound	0.13	0.10	78.25	0.04	0.00	26.63	
A2070 Kennington Road Northbound	0.27	0.40	12.69	0.40	0.70	16.99	
The Street Westbound	0.60	1.30	96.35	0.44	0.70	67.96	
A2070 Kennington Road Southbound	0.00	0.00	10.94	0.00	0.00	9.49	
		2044 10K D	М				
The Street Eastbound	0.10	0.10	57.91	0.03	0.00	22.42	
A2070 Kennington Road Northbound	0.27	0.40	12.34	0.38	0.60	16.11	
The Street Westbound	0.49	0.90	62.17	0.29	0.40	35.50	
A2070 Kennington Road Southbound	0.00	0.00	10.54	0.00	0.00	9.22	
		2044 10K D	S				
The Street Eastbound	0.12	0.10	75.36	0.04	0.00	26.61	
A2070 Kennington Road Northbound	0.27	0.40	12.73	0.40	0.70	17.05	
The Street Westbound	0.60	1.30	92.77	0.43	0.70	68.44	
A2070 Kennington Road Southbound	0.00	0.00	10.95	0.00	0.00	9.52	

10.3.12 J7b: A20 Hythe Road / The Street

The A20 Hythe Road / The Street junction is a four-arm roundabout. It is located to the east of the M20 Junction 10, connecting to the interchange via A20 Hythe Road. The junction is presented in Figure 32, and has been assessed in the ARCADY module of Junctions9. The assessment results can be found in Table 56.

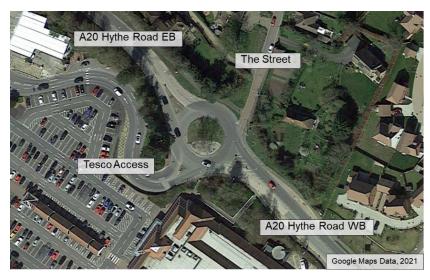


Figure 32 A20 Hythe Road / The Street

The ARCADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, as well as in the assessed Do-Minimum scenarios. The assessment highlights that the junction will be over capacity in 2044 8.5k Do-Something in the AM peak with an RFC of 0.92 on the A20 Hythe Road (westbound) and 2044 10k Do-Something in the AM peak with an RFC of 0.91 on the A20 Hythe Road (westbound).

The modelling indicates there may be a capacity issue in the Do-Something scenarios, for further discussion please see Section 10.4.

Table 56 J7b: A20 Ashford Road / The Street capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
A20 Hythe Road Westbound	0.68	2.1	10.88	0.56	1.3	8.42	
Tesco Access	0.3	0.4	5.03	0.46	0.9	5.83	
A20 Hythe Road Eastbound	0.41	0.7	3.51	0.54	1.2	4.56	
The Street	0.48	0.9	14.44	0.56	1.3	23.45	
		2037 DM					
A20 Hythe Road Westbound	0.76	3	14.04	0.62	1.6	9.39	
Tesco Access	0.34	0.5	5.53	0.49	1	6.16	
A20 Hythe Road Eastbound	0.37	0.6	3.25	0.39	0.6	3.39	
The Street	0.6	1.5	17.92	0.37	0.6	12.09	
		2037 DS					
A20 Hythe Road Westbound	0.84	5.1	21.96	0.66	1.9	10.87	
Tesco Access	0.36	0.6	5.97	0.51	1	6.51	
A20 Hythe Road Eastbound	0.32	0.5	3.02	0.35	0.5	3.1	
The Street	0.56	1.2	14.76	0.34	0.5	10.29	
		2044 8.5K E	OM				
A20 Hythe Road Westbound	0.81	4	17.89	0.65	1.8	10.41	
Tesco Access	0.37	0.6	5.92	0.53	1.1	6.67	
A20 Hythe Road Eastbound	0.39	0.6	3.34	0.38	0.6	3.35	
The Street	0.66	1.8	21.11	0.39	0.6	12.33	
		2044 8.5K I	os				
A20 Hythe Road Westbound	0.92	9.5	39	0.73	2.6	13.77	
Tesco Access	0.39	0.6	6.59	0.55	1.2	7.34	
A20 Hythe Road Eastbound	0.33	0.5	3.06	0.34	0.5	3.09	
The Street	0.6	1.5	16.6	0.36	0.6	10.59	
		2044 10K D	M				
A20 Hythe Road Westbound	0.8	3.8	17.12	0.65	1.8	10.42	
Tesco Access	0.37	0.6	5.9	0.53	1.1	6.66	
A20 Hythe Road Eastbound	0.37	0.6	3.27	0.39	0.6	3.38	
The Street	0.65	1.8	20.16	0.4	0.7	12.51	
		2044 10K E	S				
A20 Hythe Road Westbound	0.92	9.6	39.43	0.74	2.7	14.26	
Tesco Access	0.4	0.7	6.62	0.56	1.2	7.42	
A20 Hythe Road Eastbound	0.32	0.5	3.02	0.35	0.5	3.09	
The Street	0.59	1.4	16.03	0.36	0.5	10.48	

10.3.13 J8: A20 Ashford Road / B2067 Otterpool Lane

The A20 Ashford Road / B2067 Otterpool Lane is a signalised T-junction, located to the east of Newingreen. In the Do-Something scenarios, this junction will also provide connections into development zones 1B and 7 (J31).

The junction is presented in Figure 33, and has been assessed in LinSig. The assessment results can be found in Table 57.

Figure 33 A20 Ashford Road / B2067 Otterpool Lane

The LinSig assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year. The assessment highlights that the junction is over capacity in all of the assessed Do-Minimum scenarios. However, given the rerouting of traffic in the Do-Something scenarios associated with the inclusion of the signalised junction in Newingreen in these scenarios, this junction experiences significantly less congestion in the Do-Something scenarios than in the Do-Minimum scenarios and therefore does not require further discussion.

Table 57 J8: A20 Ashford Road / B2067 Otterpool Lane capacity assessment

		AM Peak		PM Peak			
raffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
A20 Ashford Road Westbound	47.4%	5.8	34.8	46.1%	5.5	48.4	
B2067 Otterpool Lane	47.3%	7.4	47.1	46.4%	9.6	34.5	
A20 Ashford Road Eastbound	45.1%	3	28	44.0%	4.4	32	
		2037 DM					
A20 Ashford Road Westbound	86.5%	8.5	91.3	103.5%	19.8	210.8	
B2067 Otterpool Lane	91.1%	34.3	45.3	103.6%	66.4	136.9	
A20 Ashford Road Eastbound	66.8%	13.9	43.9	100.6%	24.4	123.5	
		2037 DS					
A20 Ashford Road Westbound	58.2%	5.8	52.3	57.1%	6.2	45.5	
B2067 Otterpool Lane	56.8%	9.7	49.1	57.5%	8	55.8	
A20 Ashford Road Eastbound	36.9%	7.9	8.9	28.0%	5.7	5.2	
Barrow Hill Cottages	56.9%	9.7	61.1	57.6%	9.9	61.1	
		2044 8.5K D	M				
A20 Ashford Road Westbound	88.1%	9	94.9	104.5%	21	224	
B2067 Otterpool Lane	91.4%	34.6	46.1	105.2%	73.2	161.4	
A20 Ashford Road Eastbound	67.9%	14.2	44	104.0%	30.1	159.9	
		2044 8.5K D	S				
A20 Ashford Road Westbound	62.1%	#N/A	#N/A	67.9%	#N/A	#N/A	
B2067 Otterpool Lane	61.1%	11.5	47	67.9%	11.2	57.8	
A20 Ashford Road Eastbound	47.6%	10.7	11.5	34.3%	7.9	7.6	
Barrow Hill Cottages	60.2%	10.6	61	69.6%	12.2	68.4	
		2044 10K D	M				
A20 Ashford Road Westbound	88.1%	9	94.9	103.7%	20.1	213	
B2067 Otterpool Lane	91.0%	34.2	45.1	106.1%	77.2	177.5	
A20 Ashford Road Eastbound	67.4%	14	44.1	95.6%	18.6	84.3	
		2044 10K D	S				
A20 Ashford Road Westbound	62.1%	5.5	55.4	70.9%	8.5	52.4	
B2067 Otterpool Lane	57.7%	10.5	46.8	71.3%	11.9	57.8	
A20 Ashford Road Eastbound	43.2%	9.1	10.6	33.4%	7.7	7.9	
Barrow Hill Cottages	57.6%	9.8	61.7	71.1%	12.2	70	

10.3.14 J9: B2067 Otterpool Lane / Aldington Road

The B2067 Otterpool Lane / Aldington Road is a priority T-junction to the south of the A20 Ashford Road / B2067 Otterpool Lane junction. The junction is presented in Figure 34, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 58.

Figure 34 B2067 Otterpool Lane / Aldington Road

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year. The assessment highlights that the junction is over capacity all of the assessed Do-Minimum scenarios. However, the VISUM modelling indicates that the proposed signalisation of the Newingreen Junction would reduce traffic seeking alternative routes, given the increase in capacity at that junction, and the modelling results indicate that this junction will operate within capacity in the Do-Something due to the reduced traffic volumes predicted. This junction is well within capacity in the Do-Something scenarios assessed and does not require further discussion.

Table 58 J9: B2067 Otterpool Lane / Aldington Road

		AM Peak		PM Peak			
pproach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
B2067 Otterpool Lane	0.11	0.1	6.65	0.21	0.3	9.47	
Aldington Road Westbound	0.21	0.3	8	0.11	0.1	6.85	
		2037 DM					
B2067 Otterpool Lane	0.78	2.3	169.18	0.45	0.8	50.56	
Aldington Road Westbound	1.41	174.2	1023.26	1.32	129.4	742.77	
		2037 DS					
B2067 Otterpool Lane	0.35	0.5	9.09	0.35	0.5	8.67	
Aldington Road Westbound	0.42	0.7	10.89	0.34	0.5	9.6	
		2044 8.5K D	DM .				
B2067 Otterpool Lane	0.7	1.8	131.12	0.45	0.8	47.87	
Aldington Road Westbound	1.4	169.6	991.12	1.31	123.9	713.69	
		2044 8.5K E)S				
B2067 Otterpool Lane	0.44	0.8	10.7	0.43	0.7	9.92	
Aldington Road Westbound	0.46	0.9	11.77	0.54	1.2	13.22	
		2044 10K D	M				
B2067 Otterpool Lane	0.67	1.7	119.65	0.44	0.7	45.1	
Aldington Road Westbound	1.4	165.8	970.89	1.3	119.3	689.53	
		2044 10K D	S				
B2067 Otterpool Lane	0.49	1	11.89	0.45	0.8	10.53	
Aldington Road Westbound	0.5	1	12.3	0.69	2.3	19.7	

10.3.15 J10: Aldington Road / Stone Street

The Aldington Road / Stone Street is a priority T-junction located in Lympne to the west of J12 Aldington Road / Lympne Hill. The junction is presented in Figure 35, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 59.

Figure 35 Aldington Road / Stone Street

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.75 on Aldington Road in both the 2044 8.5k Do-Something and 2044 10k Do-Something scenarios in the AM peak hour.

This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 59 J10: Aldington Road / Stone Street capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Stone Street left to Aldington Road Westbound	0.09	0.1	7.27	0.11	0.1	8.24	
Stone Street right to Aldington Road Eastbound	0.28	0.4	10.86	0.47	0.9	14.02	
Aldington Road Westbound	0.01	0	5.97	0.03	0	5.41	
		2037 DM					
Stone Street left to Aldington Road Westbound	0.44	0.8	10.66	0.39	0.6	9.71	
Stone Street right to Aldington Road Eastbound	0.3	0.4	16.5	0.22	0.3	16.7	
Aldington Road Westbound	0.12	0.3	3.92	0.32	1	4.82	
		2037 DS					
Stone Street left to Aldington Road Westbound	0.26	0.4	8.23	0.41	0.7	10.45	
Stone Street right to Aldington Road Eastbound	0.28	0.4	17.59	0.19	0.2	15.74	
Aldington Road Westbound	0.58	1.8	11.67	0.32	0.6	7.48	
		2044 8.5K E	OM				
Stone Street left to Aldington Road Westbound	0.45	0.8	10.82	0.38	0.6	9.66	
Stone Street right to Aldington Road Eastbound	0.29	0.4	16.11	0.23	0.3	16.69	
Aldington Road Westbound	0.05	0.1	3.76	0.3	0.9	4.75	
		2044 8.5K I	os				
Stone Street left to Aldington Road Westbound	0.28	0.4	8.41	0.55	1.2	14.21	
Stone Street right to Aldington Road Eastbound	0.27	0.4	20.75	0.27	0.4	18.43	
Aldington Road Westbound	0.75	3.8	19.59	0.28	0.6	6.56	
		2044 10K D	M				
Stone Street left to Aldington Road Westbound	0.42	0.7	10.46	0.37	0.6	9.58	
Stone Street right to Aldington Road Eastbound	0.32	0.5	16.5	0.22	0.3	16.79	
Aldington Road Westbound	0.11	0.2	3.93	0.32	1	4.89	
		2044 10K E	S				
Stone Street left to Aldington Road Westbound	0.27	0.4	8.73	0.57	1.3	15.67	
Stone Street right to Aldington Road Eastbound	0.31	0.4	20.38	0.47	0.9	23.85	
Aldington Road Westbound	0.77	4.2	20.98	0.28	0.6	6.44	

10.3.16 J11 A20 Ashford Road / Stone Street / Hythe Road

A20 Ashford Road / Stone Street / Hythe Road is a complex priority controlled junction in Newingreen. The junction is presented in Figure 36, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 60.

Figure 36 A20 Ashford Road / Stone Street / Hythe Road

The PICADY assessment of this junction indicates that the junction operates over capacity in the Base Year, with an RFC of 0.87 in the AM peak on Hythe Road.

The assessment also highlights that this junction will have capacity issues in all future scenarios. However, the implementation of the Otterpool Avenue enables a fresh investigation into the junction in the light of reduced traffic flows. A core element of the Do-Something scenario is the provision of a signalised junction in this location, hence the Do-Something results provided relate to this junction, which is discussed in further detail in Section 10.4.

Table 60 J11: A20 Ashford Road / Stone Street / Hythe Road capacity assessment

		AM Peak			PM Peak	
Fraffic Movement	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)
		2018				
Hythe Road	0.87	5.7	88.64	0.72	2.4	49.08
Stone Street	0.72	2.5	36.54	0.37	0.6	16.48
A20 Ashford Road	0.18	0.2	7.92	0.35	0.5	10.50
		2037 DM				
Hythe Road	1.67	99.5	1096.59	0.71	2.2	60.68
Stone Street	0.5	1	22.55	0.38	0.6	19.08
A20 Ashford Road	0.39	0.6	12.45	0.55	1.2	17.15
		2037 DS				
A20 Ashford Road Southbound	58.4%	5.5	34.1	82.0%	10.6	36.4
A20 Ashford Road Eastbound	71.8%	5.3	30.7	82.6%	5.6	54.1
Stone Street	78.6%	5.9	41.1	51.7%	2.7	41.3
A261 Hythe Road	80.8%	9.1	29.8	84.7%	10.5	36.3
		2044 8.5K [M			
Hythe Road	1.97	161.1	1705.19	0.9	5.3	124.44
Stone Street	0.47	0.9	21.84	0.36	0.6	18.66
A20 Ashford Road	0.4	0.7	12.7	0.58	1.4	18.47
		2044 8.5K I)S			
A20 Ashford Road Southbound	84.9%	6.1	38.2	87.8%	12	42.2
A20 Ashford Road Eastbound	85.0%	6.7	42.7	87.8%	7.2	65.3
Stone Street	86.0%	7.6	46.3	49.7%	2.5	40.9
A261 Hythe Road	85.8%	10.5	33.1	87.0%	11.4	38.4
		2044 10K E	M			'
Hythe Road	1.9	143.5	1554.88	0.85	4.1	101.32
A292 Hythe Road Road	0.659	6.6	42.6	0.69	6	49.2
A20 Ashford Road	0.42	0.7	13	0.58	1.4	18.12
		2044 10K E	S			
A20 Ashford Road Southbound	85.2%	6.2	38.8	86.2%	11.5	40.3
A20 Ashford Road Eastbound	83.6%	6.4	40.5	85.7%	6.6	60.2
Stone Street	84.7%	7.3	44.8	47.3%	2.4	40.4
A261 Hythe Road	85.4%	10.3	32.8	86.8%	11.3	38.1

10.3.17 J12: Aldington Road / Lympne Hill

The Aldington Road / Lympne Hill is a priority T-junction is located to the east of Lympne. The junction is presented in Figure 37, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 61.

Figure 37 Aldington Road / Lympne Hill

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, and all assessed Do-Minimum scenarios, and 2037 Do-Something. However, the assessment of this junction indicates that the junction will be marginally over capacity in the 2044 8.5k Do-Something with an RFC of 0.91 and 2044 10k Do-Something scenarios with an RFC of 0.9, both in the AM peak hour on Aldington Road (eastbound).

The modelling indicates there may be a capacity issue in the Do-Something scenarios, for further discussion please see Section 10.4.

Table 61 J12: A20 Aldington Road / Lympne Hill capacity assessment

•							
		AM Peak		PM Peak			
pproach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Lympne Hill	0.36	0.6	7.98	0.14	0.2	5.91	
Aldington Road Eastbound	0.21	0.3	7.52	0.46	0.9	10.62	
		2037 DM					
Lympne Hill	0.57	1.3	14.91	0.39	0.6	11.74	
Aldington Road Eastbound	0.48	1	13.17	0.73	2.8	28.33	
		2037 DS					
Lympne Hill	0.62	1.6	13.97	0.46	0.8	9.59	
Aldington Road Eastbound	0.62	1.7	15.43	0.73	2.7	21.54	
		2044 8.5K E	OM				
Lympne Hill	0.57	1.3	14.98	0.11	0.1	17.81	
Aldington Road Eastbound	0.49	1	13.08	0.74	3	29.52	
		2044 8.5K [os				
Lympne Hill	0.76	3.1	22.07	0.54	1.1	11.42	
Aldington Road Eastbound	0.72	2.6	20.74	0.91	7.9	55.13	
		2044 10K D	M				
Lympne Hill	0.57	1.3	14.83	0.4	0.6	11.73	
Aldington Road Eastbound	0.45	0.9	12.48	0.73	2.8	28.63	
		2044 10K D	S				
Lympne Hill	0.77	3.1	22.45	0.56	1.2	11.97	
Aldington Road Eastbound	0.74	2.9	22.21	0.92	8.5	58.37	

10.3.18 J13: A261 Hythe Road / Aldington Road

The A261 Hythe Road / Aldington Road is a priority T-junction located to the south of Pedlinge. The junction is presented in Figure 38, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 62.

Figure 38 A261 Hythe Road / Aldington Road

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The maximum RFC is 0.52 on Aldington Road in 2044 8.5k Do-Something in the AM peak hour.

This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 62 J13: A2610 Hythe Road / Aldington Road capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Aldington Road	0.36	0.6	14.94	0.26	0.4	13.32	
A261 Hythe Road Eastbound	0.03	0	7.56	0.06	0.1	6.76	
		2037 DM					
Aldington Road	0.47	0.9	23.73	0.27	0.4	16.68	
A261 Hythe Road Eastbound	0.01	0	13.53	0	0	0	
		2037 DS					
Aldington Road	0.47	0.9	36.03	0.42	0.7	36.06	
A261 Hythe Road Eastbound	0.01	0	13.57	0	0	0	
	_	2044 8.5K D	M				
Aldington Road	0.49	0.9	25.96	0.28	0.4	17.44	
A261 Hythe Road Eastbound	0	0	0	0	0	0	
		2044 8.5K D	S				
Aldington Road	0.52	1	43.89	0.37	0.6	38.01	
A261 Hythe Road Eastbound	0	0	0	0	0	0	
		2044 10K D	M				
Aldington Road	0.49	0.9	26.12	0.27	0.4	17.14	
A261 Hythe Road Eastbound	0.04	0.1	8.61	0	0	0	
		2044 10K D	S				
Aldington Road	0.54	1.1	44.96	0.38	0.6	38.4	
A261 Hythe Road Eastbound	0.01	0	9.03	0	0	0	

10.3.19 J14: A261 London Road / Barrack Hill

The A261 London Road / Barrack Hill is a priority T-junction immediately to the north of J15 A259 / Dymchurch Road / Military Road signalised junction. The junction is presented in Figure 39, and has been assessed in the PICADY module of Junctions9. The assessment results can be found in Table 63.



Figure 39 A261 London Road / Barrack Hill

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, as well as all Do-Minimum scenarios, and 2037 Do-Something. However, in the assessment highlights, that the junction is over capacity in 2044 8.5k Do-Something with a maximum RFC of 1.18, and in 2044 10k Do-Something with a maximum RFC of 1.1, both in the PM peak hour. The capacity issues are present for vehicles exiting Barrack Hill on A261 London Road (in both directions).

The modelling indicates there may be a capacity issue in the Do-Something scenarios, for further discussion please see Section 10.4.

Table 63 J14: A261 London Road / Barrack Hill capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Barrack Hill	0.32	0.5	8.68	0.25	0.3	8.28	
A261 London Road Westbound	0.37	0.6	9.45	0.23	0.3	8.82	
		2037 DM					
Barrack Hill	0.41	0.7	12.58	0.36	0.6	12.94	
A261 London Road Westbound	0.47	1.2	10.77	0.32	0.6	10.87	
		2037 DS					
Barrack Hill	0.47	0.8	87.56	0.76	2.4	145.69	
A261 London Road Westbound	0.49	1.4	10.92	0.33	0.6	11.03	
		2044 8.5K D	M				
Barrack Hill	0.42	0.7	12.92	0.38	0.6	13.65	
A261 London Road Westbound	0.48	1.4	10.78	0.33	0.6	11.02	
		2044 8.5K E	S				
Barrack Hill	0.6	1.3	143.44	1.18	12.8	348.38	
A261 London Road Westbound	0.51	1.7	10.99	0.35	0.7	11.39	
		2044 10K D	М				
Barrack Hill	0.42	0.7	12.71	0.37	0.6	13.26	
A261 London Road Westbound	0.47	1.3	10.75	0.32	0.6	10.93	
		2044 10K D	S				
Barrack Hill	0.58	1.2	132.98	1.15	11.5	323.74	
A261 London Road Westbound	0.5	1.6	11.03	0.34	0.7	11.32	

10.3.20 J15 A259 / Dymchurch Road / Military Road Gyratory

The A259 / Dymchurch Road / Military Road is a signalised junction to the south of J14 A261 London Road / Barrack Hill. The junction is presented in Figure 40, and has been assessed in LinSig. The assessment results can be found in Table 64.

Figure 40 A259 / Dymchurch Road / Military Road Gyratory

The LinSig assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year. However, the assessment highlights that the junction is over capacity in all future scenarios. Capacity issues have been identified on London Road for all movements, and A259 Military Bridge for right turners in both the AM and PM peak hours.

The highest DoS is predicted to occur in the 2044 8.5k scenario. In the AM peak the maximum DoS is 97.2%, and in the PM peak the highest DoS is 100.5%, both of which are on London Road (for ahead and right turners).

Table 64 J15: A259 / Dymchurch Road / Military Road Gyratory capacity assessment

		AM Peak		PM Peak		
Fraffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)
		2018				
London Road	60.3%	4.9	16.6	63.2%	4.8	14.1
St John Moore Avenue	30.4%	0.2	5.3	56.7%	1.7	8.5
Portland Road	46.2%	0.4	5.8	46.1%	0.4	6.3
Dymchurch Road Northbound	67.5%	8	12.4	55.0%	6.1	12.2
Dymchurch Road Westbound	42.9%	4.6	5.5	60.6%	7.9	8
Green Lane	18.0%	0.8	46.3	16.8%	0.7	36.1
Scalons Bridge Road Northbound	64.3%	11	16.1	66.6%	9.1	18.4
Scalons Bridge Road Right Southbound	38.4%	3.1	24.5	52.4%	4.1	29.8
Military Road Ahead	70.9%	11.9	8.6	74.4%	12.1	9.9
		2037 DM				
London Road	95.3%	19.2	40.9	97.6%	22.7	47.8
St John Moore Avenue	35.9%	0.3	6.6	65.5%	3.2	12.3
Portland Road	62.6%	0.8	8.9	70.5%	1.2	12.5
Dymchurch Road Northbound	86.2%	11.9	17.6	70.0%	7.6	15.1
Dymchurch Road Westbound	54.5%	6.5	6.3	76.3%	12.6	11
Green Lane	19.5%	0.8	46.5	17.2%	0.7	36.2
Scalons Bridge Road Northbound	93.3%	22.3	47.7	97.3%	20.3	71.7
Scalons Bridge Road Right Southbound	57.0%	6.8	18.4	82.1%	11.2	32.2
Military Road Ahead	89.6%	23.5	17.4	86.6%	18.7	15.3
		2037 DS				
London Road	93.9%	17.5	34.5	97.8%	23	48.4
St John Moore Avenue	36.7%	0.3	6.8	65.8%	3.3	12.5
Portland Road	69.2%	1.1	11.1	79.3%	1.8	18
Dymchurch Road Northbound	89.3%	13.5	21.6	71.3%	8	16
Dymchurch Road Westbound	59.7%	7.7	6.8	81.2%	14.9	12.8
Green Lane	19.5%	0.8	46.5	17.2%	0.7	36.2
Scalons Bridge Road Northbound	95.8%	24.8	58.3	97.3%	20.3	71.7
Scalons Bridge Road Right Southbound	59.0%	7	19.6	82.1%	11.2	32.2
Military Road Ahead	92.5%	27.2	21.4	87.2%	19.3	15.8
		2044 8.5K D	M			
London Road	96.0%	20	43.5	99.6%	28	61.7
St John Moore Avenue	37.8%	0.3	6.9	68.7%	3.6	14
Portland Road	65.2%	0.9	9.6	73.1%	1.3	13.8
Dymchurch Road Northbound	88.4%	12.8	19.3	71.6%	8	15.4
Dymchurch Road Westbound	56.4%	6.7	6.5	78.2%	13.4	11.6
Green Lane	19.5%	0.8	46.5	17.2%	0.7	36.2
Scalons Bridge Road Northbound	95.9%	25.3	57.2	99.9%	24.3	91.2
Scalons Bridge Road Right Southbound	57.4%	6.8	18.5	83.7%	11.7	33.6
Military Road Ahead	91.6%	26.1	19.9	89.1%	21	17.5

Otterpool Park

Transport Assessment

The modelling indicates there may be a capacity issue in the Do-Something scenarios; for further discussion please see Section 10.4 below.

		AM Peak		PM Peak			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2044 8.5K D	S				
London Road	97.2%	22.4	47.1	100.5%	32	68.2	
St John Moore Avenue	39.3%	0.3	7.3	72.5%	4.3	16.7	
Portland Road	76.9%	1.6	14.8	87.0%	3	28	
Dymchurch Road Northbound	93.4%	17.8	28.3	74.7%	8.7	17.6	
Dymchurch Road Westbound	63.0%	8.5	7.2	87.2%	18.3	16.3	
Green Lane	19.5%	0.8	46.5	17.2%	0.7	36.2	
Scalons Bridge Road Northbound	95.9%	25.3	57.2	100.3%	25.1	94.2	
Scalons Bridge Road Right Southbound	61.5%	7.4	21	86.7%	12.5	38.4	
Military Road Ahead	96.3%	34.5	31.5	94.0%	26.7	25.4	
		2044 10K D	M				
London Road	95.7%	19.7	42.5	98.6%	24.7	53.7	
St John Moore Avenue	36.8%	0.3	6.7	66.7%	3.4	12.9	
Portland Road	63.7%	0.9	9.2	71.4%	1.2	12.9	
Dymchurch Road Northbound	87.0%	12.2	18.2	70.3%	7.7	15.2	
Dymchurch Road Westbound	55.4%	6.6	6.3	76.9%	12.7	11.2	
Green Lane	19.5%	0.8	46.5	17.2%	0.7	36.2	
Scalons Bridge Road Northbound	94.0%	22.9	50	97.9%	21.2	75.7	
Scalons Bridge Road Right Southbound	57.3%	6.8	18.5	82.8%	11.4	32.8	
Military Road Ahead	90.5%	24.5	18.4	87.6%	19.5	16.1	
		2044 10K D	S				
London Road	91.3%	13.5	28.3	98.1%	24.1	48.7	
St John Moore Avenue	36.9%	0.3	7	69.2%	3.6	14.5	
Portland Road	75.2%	1.5	13.7	84.5%	2.5	23.9	
Dymchurch Road Northbound	90.7%	14.5	24.1	80.3%	10.3	28.4	
Dymchurch Road Westbound	61.1%	7.9	6.9	84.9%	16.7	14.7	
Green Lane	17.4%	0.8	46.2	16.3%	0.7	36.1	
Scalons Bridge Road Northbound	90.9%	20.5	40.8	97.8%	20.9	74.7	
Scalons Bridge Road Right Southbound	56.1%	6.4	19.8	85.0%	11.8	36.3	
Military Road Ahead	94.5%	30.5	25.7	91.6%	23.4	20.7	

133

10.3.21 J16: A259 Prospect Road / A259 East Road / Station Road / High Street

The A259 Prospect Road/ Station Road/ High Street roundabout is located to the east of the Dymchurch gyratory. It is a four-arm roundabout with the high street arm operating as exit only. The roundabout is presented in Figure 41 and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 65.

Figure 41 A259 Prospect Road / A259 East Road / Station Road / High Street

The ARCADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, as well as 2037 Do-Minimum and So-Something, and 2044 10k Do-Minimum. The assessment predicts that the junction is at full capacity in 2044 8.5k Do-Minimum in the AM peak with an RFC of 0.85, and marginally over capacity in 2044 8.5k Do-Something with an RFC of 0.88 and 10k Do-Something with an RFC of 0.86. These capacity issues are all in the AM peak hour on Prospect Road.

Otterpool Park development traffic does not present a severe impact at this junction and there does not appear to be an existing safety issue, therefore no mitigation is proposed at this location.

Table 65 J16: A259 Prospect Road / A259 East Road / Station Road / High Street capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018				_	
Station Road	0.36	0.6	5.15	0.38	0.6	5.44	
A259 Seabrook Road	0.4	0.7	4.1	0.5	1	4.82	
Prospect Road	0.69	2.2	8.59	0.72	2.5	9.47	
		2037 DM					
Station Road	0.4	0.7	5.5	0.45	0.8	6.02	
A259 Seabrook Road	0.42	0.7	4.19	0.55	1.2	5.36	
Prospect Road	0.83	4.6	16.1	0.72	2.5	9.29	
		2037 DS					
Station Road	0.43	0.8	5.91	0.47	0.9	6.33	
A259 Seabrook Road	0.44	0.8	4.4	0.57	1.3	5.72	
Prospect Road	0.84	4.9	17	0.7	2.2	8.63	
		2044 8.5K E	M				
Station Road	0.42	0.7	5.73	0.47	0.9	6.26	
A259 Seabrook Road	0.44	0.8	4.35	0.57	1.3	5.57	
Prospect Road	0.85	5.5	18.79	0.73	2.7	9.79	
		2044 8.5K E	S				
Station Road	0.45	0.8	6.18	0.51	1	6.97	
A259 Seabrook Road	0.47	0.9	4.63	0.6	1.5	6.11	
Prospect Road	0.88	6.5	21.73	0.75	2.9	10.57	
		2044 10K D	M				
Station Road	0.4	0.7	5.59	0.46	0.8	6.11	
A259 Seabrook Road	0.43	0.8	4.26	0.55	1.2	5.42	
Prospect Road	0.84	4.9	17.03	0.72	2.6	9.55	
		2044 10K D	S		-	_	
Station Road	0.43	0.8	6	0.49	1	6.72	
A259 Seabrook Road	0.46	0.8	4.51	0.59	1.4	5.92	
Prospect Road	0.86	5.9	20.02	0.73	2.7	9.86	

10.3.22 J17: A20 Ashford Road / A20 Junction 11 LILO

The A20 Ashford Road / A20 J11 offslip is a left-in left-out junction located to the south of M20 Junction 11. The junction is presented in Figure 42, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 66.

Figure 42 A20 Ashford Road / A20 Junction 11 LILO

The only give-way movement at this junction is the left-out from the A20 to the east. The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year, as well as 2037 Do-Minimum and So-Something, and 2044 10k Do-Minimum. However, the junction is anticipated to be over capacity in 2044 8.5k Do-Something with an RFC of 1.14 and 2044 10k Do-Something with an RFC 1.09 in the AM peak hour.

The modelling indicates there may be a capacity issue in the Do-Something scenarios, for further discussion please see Section 10.4.

Table 66 J17: A20 Ashford Road / A20 Junction 11 LILO capacity assessment

		AM Peak		PM Peak		
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)
		2018				
A20 Ashford Road	0.5	1	11.27	0.31	0.4	8.24
		2037 DM				
A20 Ashford Road	0.74	2.7	26.09	0.46	0.9	12.45
		2037 DS				
A20 Ashford Road	0.82	4.1	43.71	0.54	1.2	19.32
		2044 8.5K E	M			
A20 Ashford Road	0.77	3.2	30.43	0.48	0.9	13.07
		2044 8.5K E	os			
A20 Ashford Road	1.14	32.6	268.45	0.6	1.5	23.52
		2044 10K D	M			
A20 Ashford Road	0.76	3	29.04	0.48	0.9	12.8
		2044 10K D	S			
A20 Ashford Road	1.15	34.3	281.61	0.62	1.6	25.56

10.3.23 J18: A20 Ashford Road / Sandling Road

The A20 Ashford Road / Sandling Road is a priority T-junction located to the east of M20 Junction 11. The junction is presented in Figure 43, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 67.

Figure 43 A20 Ashford Road / Sandling Road

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The highest RFC is 0.51 in 2044 8.5k Do-Something in the PM peak on A20 Ashford Road (northbound). This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 67 J18: A20 Ashford Road / Sandling Road capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Sandling Road	0.28	0.4	7.29	0.23	0.3	6.44	
A20 Ashford Rd Northbound	0.23	0.4	6.77	0.36	0.7	7.87	
		2037 DM					
Sandling Road	0.34	0.5	8.69	0.2	0.2	11.11	
A20 Ashford Rd Northbound	0.36	0.7	7.67	0.49	1.1	10	
		2037 DS					
Sandling Road	0.33	0.5	8.78	0.29	0.4	11.75	
A20 Ashford Rd Northbound	0.36	0.8	7.5	0.47	1.1	9.56	
		2044 8.5K D	M				
Sandling Road	0.36	0.6	9.01	0.2	0.3	11.35	
A20 Ashford Rd Northbound	0.37	0.8	7.74	0.51	1.2	10.41	
		2044 8.5K D	os e				
Sandling Road	0.37	0.6	9.57	0.31	0.4	12.28	
A20 Ashford Rd Northbound	0.38	0.8	7.67	0.51	1.3	10.12	
	-	2044 10K D	M		-		
Sandling Road	0.35	0.5	8.85	0.2	0.2	11.2	
A20 Ashford Rd Northbound	0.37	0.8	7.77	0.5	1.2	10.21	
		2044 10K D	S				
Sandling Road	0.36	0.6	9.39	0.3	0.4	12.12	
A20 Ashford Rd Northbound	0.38	0.8	7.7	0.5	1.2	9.96	

10.3.24 J19: A20 Ashford Road / Bargrove

The A20 Ashford Road / Bargrove is a four-arm roundabout to the south of Beachborough. The junction is presented in Figure 44, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 68.

Figure 44 A20 Ashford Road / Bargrove

The ARCADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The highest RFC is 0.38 in 2044 8.5k Do-Something in the PM peak on A20 Ashford Road (westbound).

This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 68 J19: A20 Ashford Road / Bargrove capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Beachborough	0.18	0.2	2.69	0.13	0.2	2.47	
A20 Ashford Road Westbound	0.28	0.4	3.09	0.32	0.5	3.26	
Bargrove	0.22	0.3	3.1	0.19	0.2	3.03	
A20 Ashford Road Eastbound	0.07	0.1	2.61	0.06	0.1	2.54	
	<u> </u>	2037 DM					
Beachborough	0.23	0.3	3.02	0.18	0.2	2.65	
A20 Ashford Road Westbound	0.32	0.5	3.56	0.35	0.5	3.6	
Bargrove	0.26	0.3	3.45	0.24	0.3	3.43	
A20 Ashford Road Eastbound	0.19	0.2	3.11	0.1	0.1	2.72	
	<u> </u>	2037 DS					
Beachborough	0.24	0.3	3.1	0.2	0.2	2.77	
A20 Ashford Road Westbound	0.32	0.5	3.57	0.37	0.6	3.81	
Bargrove	0.24	0.3	3.42	0.23	0.3	3.47	
A20 Ashford Road Eastbound	0.22	0.3	3.22	0.15	0.2	2.88	
	<u> </u>	2044 8.5K E	OM				
Beachborough	0.24	0.3	3.08	0.18	0.2	2.68	
A20 Ashford Road Westbound	0.32	0.5	3.6	0.36	0.6	3.67	
Bargrove	0.27	0.4	3.52	0.24	0.3	3.46	
A20 Ashford Road Eastbound	0.19	0.2	3.15	0.11	0.1	2.75	
		2044 8.5K I	os				
Beachborough	0.26	0.4	3.21	0.21	0.3	2.81	
A20 Ashford Road Westbound	0.33	0.5	3.67	0.38	0.6	3.9	
Bargrove	0.26	0.4	3.54	0.24	0.3	3.53	
A20 Ashford Road Eastbound	0.23	0.3	3.29	0.17	0.2	2.95	
		2044 10K D	M				
Beachborough	0.23	0.3	3.05	0.18	0.2	2.66	
A20 Ashford Road Westbound	0.32	0.5	3.58	0.35	0.5	3.63	
Bargrove	0.26	0.4	3.48	0.24	0.3	3.44	
A20 Ashford Road Eastbound	0.19	0.2	3.14	0.1	0.1	2.73	
		2044 10K E	S				
Beachborough	0.26	0.3	3.18	0.21	0.3	2.8	
A20 Ashford Road Westbound	0.32	0.5	3.65	0.37	0.6	3.86	
Bargrove	0.26	0.3	3.52	0.24	0.3	3.51	
A20 Ashford Road Eastbound	0.23	0.3	3.29	0.17	0.2	2.93	

10.3.25 J20: M20 Junction 12 (Cheriton interchange)

M20 Junction 12 is Cheriton Interchange, providing access to Cheriton from the M20. It is a large four-arm priority roundabout. The junction is presented in Figure 45, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 69.

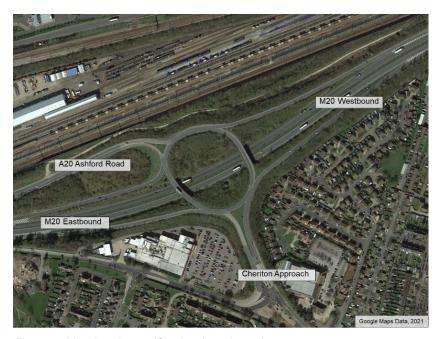


Figure 45 M20 Junction 12 (Cheriton interchange)

The ARCADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The highest RFC is 0.83 in 2044 8.5k Do-Something in the PM peak on the M20 Westbound. This junction is within capacity in the scenarios assessed and does not require further discussion.

Table 69 J20: M20 Junction 12 (Cheriton interchange) capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
M20 Westbound	0.33	0.5	4.67	0.47	0.9	5.38	
B2064 Cheriton	0.37	0.6	2.05	0.42	0.7	2.21	
M20 Eastbound	0.56	1.2	4.71	0.37	0.6	3.23	
A20 Ashford Road	0.4	0.7	3.98	0.37	0.6	3.41	
		2037 DM					
M20 Westbound	0.64	1.8	7.48	0.61	1.6	7.74	
B2064 Cheriton	0.51	1	2.62	0.49	0.9	2.42	
M20 Eastbound	0.46	0.9	4.36	0.61	1.5	6.11	
A20 Ashford Road	0.45	0.8	4.19	0.56	1.3	6.34	
		2037 DS					
M20 Westbound	0.72	2.5	10.79	0.71	2.4	11.78	
B2064 Cheriton	0.53	1.1	2.73	0.52	1.1	2.61	
M20 Eastbound	0.58	1.3	5.34	0.7	2.3	7.65	
A20 Ashford Road	0.49	1	5.01	0.6	1.5	7.23	
		2044 8.5K E	OM				
M20 Westbound	0.66	1.9	8.07	0.64	1.7	8.54	
B2064 Cheriton	0.52	1.1	2.71	0.49	1	2.45	
M20 Eastbound	0.47	0.9	4.48	0.63	1.7	6.41	
A20 Ashford Road	0.46	0.9	4.34	0.58	1.4	6.66	
		2044 8.5K E	os				
M20 Westbound	0.75	2.9	13.12	0.83	4.4	21.46	
B2064 Cheriton	0.58	1.4	3.07	0.54	1.2	2.73	
M20 Eastbound	0.64	1.8	6.33	0.8	3.8	11.21	
A20 Ashford Road	0.53	1.1	5.63	0.66	1.9	9.18	
		2044 10K D	M				
M20 Westbound	0.65	1.8	7.8	0.62	1.6	8.13	
B2064 Cheriton	0.51	1	2.65	0.49	1	2.43	
M20 Eastbound	0.47	0.9	4.43	0.62	1.6	6.25	
A20 Ashford Road	0.45	0.8	4.25	0.57	1.3	6.48	
		2044 10K D	S				
M20 Westbound	0.75	2.9	13.26	0.81	4	19.71	
B2064 Cheriton	0.57	1.3	3.02	0.54	1.2	2.73	
M20 Eastbound	0.65	1.9	6.52	0.79	3.7	10.85	
A20 Ashford Road	0.53	1.1	5.65	0.65	1.8	9.1	

10.3.26 J21a: M20 Junction 13 (Castle Hill Interchange)

The M20 Junction 13 forms part of the main interchange connecting Folkestone to the M20. This junction is a five-arm roundabout, with a bypass for vehicles travelling from Cherry Garden Avenue to M20 Westbound. The junction is presented in Figure 46, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 70.

Figure 46 M20 Junction 13 (Castle Hill Interchange)

The assessment shows that the junction operates well within capacity in the Base Year, and in 2037 Do-Minimum. The modelling indicates that the junction is over capacity in all future scenarios in the AM peak hour. The assessment highlights that the capacity issues are on Churchill Avenue, with the highest RFC of 0.94 in the 2044 8.5k Do-Something scenario.

The modelling indicates there may be a capacity issue in the Do-Something scenarios; for further discussion please see Section 10.4.

Table 70 J21a: M20 Junction 13 (Castle Hill interchange) capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
M20 Westbound Entry Only	0.46	0.8	4.68	0.29	0.4	3.35	
Churchill Avenue	0.7	2.3	6.75	0.6	1.5	4.4	
Cherry Garden Avenue	0.51	1	4.9	0.55	1.2	5.14	
A20 Castle Hill Bridge	0.65	1.8	5.57	0.59	1.4	4.57	
		2037 DM					
M20 Westbound Entry Only	0.57	1.3	6	0.43	0.8	5.04	
Churchill Avenue	0.83	4.7	12	0.74	2.8	7.1	
Cherry Garden Avenue	0.57	1.3	6.02	0.68	2.1	7.91	
A20 Castle Hill Bridge	0.68	2.1	5.96	0.77	3.2	8.25	
		2037 DS					
M20 Westbound Entry Only	0.59	1.4	6.73	0.45	0.8	5.28	
Churchill Avenue	0.86	6	14.87	0.79	3.6	8.63	
Cherry Garden Avenue	0.63	1.7	7.16	0.77	3.2	11.55	
A20 Castle Hill Bridge	0.73	2.7	7.06	0.78	3.5	8.75	
		2044 8.5K E	M				
M20 Westbound Entry Only	0.59	1.5	6.57	0.43	0.7	5.19	
Churchill Avenue	0.87	6.2	15.7	0.77	3.2	8.04	
Cherry Garden Avenue	0.6	1.5	6.65	0.72	2.5	9.09	
A20 Castle Hill Bridge	0.7	2.3	6.39	0.79	3.6	9.31	
		2044 8.5K [os				
M20 Westbound Entry Only	0.64	1.7	7.86	0.45	0.8	5.45	
Churchill Avenue	0.94	11.9	28.33	0.83	4.8	11.07	
Cherry Garden Avenue	0.66	1.9	8.12	0.84	4.8	16.41	
A20 Castle Hill Bridge	0.77	3.2	8.08	0.81	4.3	10.37	
		2044 10K D	M				
M20 Westbound Entry Only	0.58	1.4	6.23	0.42	0.7	5	
Churchill Avenue	0.85	5.3	13.54	0.75	3	7.49	
Cherry Garden Avenue	0.58	1.4	6.3	0.69	2.2	8.28	
A20 Castle Hill Bridge	0.7	2.3	6.22	0.78	3.4	8.7	
		2044 10K E	S				
M20 Westbound Entry Only	0.62	1.6	7.47	0.45	0.8	5.4	
Churchill Avenue	0.92	9.5	22.77	0.82	4.4	10.22	
Cherry Garden Avenue	0.64	1.8	7.6	0.81	4.2	14.62	
A20 Castle Hill Bridge	0.77	3.2	8.07	0.8	4	9.64	

10.3.27 J21b: M20 Junction 13

M20 Junction 13 is the Castle Hill interchange, to the east of the M20 Junction 12, and to the north of J21a, which also forms parts of this junction/interchange. This junction is a four-arm roundabout. The junction is presented in Figure 47, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 71.

Figure 47 M20 Junction 13

The ARCADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year and will continue to operate within capacity in all the assessed Do-Minimum and Do-Something scenarios. The highest RFC is 0.78 in both the 2044 8.5k Do-Something and 2044 10k Do-Something scenarios in the PM peak hour on the M20 eastbound. This junction is well within capacity in the scenarios assessed and does not require further discussion.

Table 71 J21b: M20 Junction 13 capacity assessment

Castle Hill Bridge M20 Eastbound Castle Hill Castle Hill Bridge M20 Eastbound Castle Hill Bridge	0.27 0.48	Queue Length (vehicles) 2018	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay
M20 Eastbound Castle Hill Castle Hill Bridge M20 Eastbound Castle Hill	+ -				(101110100)	(secs)
M20 Eastbound Castle Hill Castle Hill Bridge M20 Eastbound Castle Hill	+ -	0.4				
Castle Hill Castle Hill Bridge M20 Eastbound Castle Hill	0.48	0.4	4.36	0.43	0.7	5.23
Castle Hill Bridge M20 Eastbound Castle Hill	3.40	0.9	3	0.51	1	3.33
M20 Eastbound Castle Hill	0.01	0	5.2	0.02	0	5.23
M20 Eastbound Castle Hill		2037 DM				
Castle Hill	0.47	0.9	5.84	0.6	1.5	7.61
	0.61	1.5	4.28	0.7	2.3	5.9
Ocedia I III Pridera	0	0	0	0	0	0
O 4 - 1		2037 DS				
Castle Hill Bridge	0.51	1	6.33	0.66	2	9.04
M20 Eastbound	0.66	1.9	5.07	0.74	2.7	6.85
Castle Hill	0	0	0	0	0	0
		2044 8.5K D	M			
Castle Hill Bridge	0.49	1	6.16	0.6	1.5	7.56
M20 Eastbound	0.63	1.7	4.62	0.71	2.4	6.08
Castle Hill	0	0	0	0	0	0
		2044 8.5K D	s			
Castle Hill Bridge	0.53	1.1	6.66	0.72	2.5	10.65
M20 Eastbound	0.7	2.3	5.77	0.78	3.6	8.64
Castle Hill	0	0	0	0	0	0
		2044 10K D	М			
Castle Hill Bridge	0.48	0.9	6.03	0.59	1.4	7.44
M20 Eastbound	0.62	1.6	4.5	0.71	2.4	6.09
Castle Hill	0	0	0	0	0	0
		2044 10K D	S			
Castle Hill Bridge						
M20 Eastbound	0.51	1.1	6.43	0.71	2.4	10.55
Castle Hill	0.51	1.1	6.43 5.67	0.71	2.4 3.5	10.55 8.45

140

10.3.28 J23: M20 Junction 9

The M20 Junction 9 is Drovers Interchange serving Ashford from the west. This is a signalised junction. The junction is presented in Figure 48, and has been assessed in LinSig. The capacity assessments are presented in Table 73.

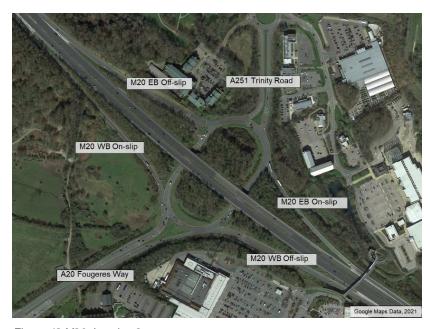


Figure 48 M20 Junction 9

The baseline capacity assessments show that the junction is over capacity with a DoS of 94.2% in the PM peak on A251 Trinity Road. Additionally, the assessment highlights that the junction is predicted to be over capacity in all the assessed future scenarios in both peak hours. The highest DoS is 126.2% in 2044 8.5k Do-Something PM on Trinity Road. In both 2044 8.5k Do-Something and 2044 10k Do-something all arms are over capacity in the AM peak hour.

The modelling indicates there may be a capacity issue in the Do-Something scenarios; for further discussion please see Section 10.4.

Table 72 J23: M20 Junction 9 capacity assessment

		AM Peak		PM Peak			
raffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
A251 Trinity Road	72.2%	6	29.2	94.9%	18.2	57.1	
M20 Slip Road Westbound	63.3%	6.5	17.4	75.2%	6.9	28.5	
Fougeres Way	71.6%	7	23	77.8%	9.2	28.7	
M20 Sliproad Eastbound	63.8%	4.8	20.8	83.7%	9.7	35.3	
		2037 DM					
A251 Trinity Road	93.2%	13.3	50.5	114.2%	83.3	273.4	
M20 Slip Road Westbound	90.0%	10.9	28.9	104.1%	20.2	84.8	
Fougeres Way	85.2%	12.4	23.3	57.8%	7.1	12.5	
M20 Sliproad Eastbound	94.4%	10.7	34.1	93.4%	16.3	34.9	
		2037 DS					
A251 Trinity Road	95.0%	14.7	57.2	120.2%	106.6	356.1	
M20 Slip Road Westbound	93.9%	12.8	33.5	119.5%	46.2	191.2	
Fougeres Way	88.2%	13.5	27.6	69.4%	9.7	14.2	
M20 Sliproad Eastbound	100.0%	15.8	54.6	99.3%	27.1	65	
		2044 8.5K D	M				
A251 Trinity Road	96.0%	15.6	61.7	115.1%	90.4	286	
M20 Slip Road Westbound	94.1%	13.1	34	110.8%	37.3	155.1	
Fougeres Way	93.3%	16.9	37.2	71.3%	10.2	14.7	
M20 Sliproad Eastbound	100.1%	16.1	50.4	92.8%	17.2	32.7	
		2044 8.5K E	S				
A251 Trinity Road	98.7%	19.1	78.8	126.2%	132.6	430.3	
M20 Slip Road Westbound	99.6%	18.8	49.3	102.1%	16.6	58.1	
Fougeres Way	92.0%	16.1	32.7	76.9%	11.8	17.3	
M20 Sliproad Eastbound	103.4%	32.7	115	122.2%	113.2	290.1	
		2044 10K D	М				
A251 Trinity Road	96.5%	16.2	64.3	122.6%	116.9	386.2	
M20 Slip Road Westbound	87.9%	10.7	26.5	110.8%	37.3	155.1	
Fougeres Way	89.5%	13.6	30.7	71.5%	10.3	14.8	
M20 Sliproad Eastbound	100.1%	16.3	51.3	116.1%	87.4	219.6	
		2044 10K D	S				
A251 Trinity Road	99.0%	19.5	81.3	121.2%	114.4	367	
M20 Slip Road Westbound	98.8%	17.6	46	120.6%	53.6	210.9	
Fougeres Way	92.0%	16.1	32.7	74.7%	11.1	15.8	
M20 Sliproad Eastbound	103.6%	33.5	117.7	96.6%	21.9	45.6	

10.3.29 **J24: B2064 Cheriton High Street / B2063 Risborough Lane**

The B2064 Cheriton High Street / B2063 Risborough Lane is a signalised junction located in Cheriton to the south-east of the M20 Junction 12. The junction is presented in Figure 49, and has been assessed in LinSig. The capacity assessments are presented in Table 74.

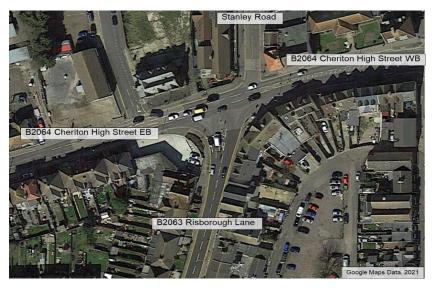


Figure 49 B2064 Cheriton High Street / B2063 Risborough Lane

The assessment indicates that the junction is approaching capacity in the Base Year. The modelling predicts that the junction will be over capacity in all the assessed future scenarios in both peak hours. In both 2044 8.5k Do-Something and 2044 10k Do-Something all arms are over capacity in the AM peak hour except for Cheriton High Street Westbound, which is in capacity in all assessed scenarios.

The junction is predicted to be over capacity in all future years, whether or not the Otterpool Park development proceeds; for further discussion please see Section 10.4 below.

Table 74 J24: B2064 Cheriton High Street / B2063 Risborough Lane capacity assessment

		AM Peak		PM Peak			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
Stanley Road Soutbound	73.8%	5	78.3	66.6%	3.6	92.5	
Cheriton High Street Westbound	56.5%	7.1	33.5	58.2%	8.5	32.8	
Risborough Lane	78.0%	12.6	35.8	81.3%	16.1	42.9	
Cheriton High Street Eastbound	76.6%	8.2	41.6	81.7%	16	47.5	
		2037 DM					
Stanley Road Soutbound	97.6%	9.2	174	71.8%	4.1	99.2	
Cheriton High Street Westbound	67.4%	10.4	28.6	67.8%	12.6	23.2	
Risborough Lane	136.4%	140.4	568.3	172.8%	196.3	901	
Cheriton High Street Eastbound	136.4%	118.1	503.2	172.3%	294.6	837.8	
		2037 DS					
Stanley Road Soutbound	103.3%	12	229.1	81.0%	5.1	117.4	
Cheriton High Street Westbound	70.3%	11.6	26.7	70.9%	14.5	22.5	
Risborough Lane	160.3%	200.3	788	202.9%	250.8	1077	
Cheriton High Street Eastbound	161.0%	222.8	744	209.7%	416.6	1049.5	
		2044 8.5K D	М				
Stanley Road Soutbound	100.3%	10.4	195.6	73.4%	4.2	101.7	
Cheriton High Street Westbound	68.2%	10.6	28.1	69.8%	13.8	22.6	
Risborough Lane	142.9%	158.7	635.1	190.2%	222.5	1009.8	
Cheriton High Street Eastbound	140.6%	137.6	576.7	184.7%	343.4	912.9	
		2044 8.5K D	S				
Stanley Road Soutbound	111.8%	17.5	330	85.9%	5.8	132.3	
Cheriton High Street Westbound	76.8%	14.5	26.4	73.9%	16.8	20.6	
Risborough Lane	197.9%	274	1027.3	242.6%	300	1243	
Cheriton High Street Eastbound	193.8%	307.1	944.7	249.9%	533.2	1210.7	
		2044 10K D	М				
Stanley Road Soutbound	98.3%	9.5	179.4	71.8%	4.1	99.2	
Cheriton High Street Westbound	67.2%	10.4	27.8	68.6%	13.1	22.9	
Risborough Lane	141.3%	152.9	618.7	181.1%	208.6	955.8	
Cheriton High Street Eastbound	136.3%	125.7	528.3	177.5%	317.7	870.7	
		2044 10K D	S				
Stanley Road Soutbound	109.1%	15.6	297	84.3%	5.6	127	
Cheriton High Street Westbound	76.1%	13.8	26.7	71.7%	15.6	19.9	
Risborough Lane	188.4%	257.4	976	238.1%	292.4	1227.2	
Cheriton High Street Eastbound	188.7%	295	918.4	230.5%	492.5	1141.1	

10.3.30 J25: B2064 Cheriton Road / A2034 Cherry Garden Avenue

The B2064 Cheriton Road / A2034 Cherry Garden Avenue is a signalised junction located in Cheriton. The junction is presented in Figure 50 and has been assessed in LinSig. The capacity assessments are presented in Table 75.

Figure 50 B2064 Cheriton Road / A2034 Cherry Garden Avenue

The modelling demonstrates that the junction is at capacity in the Base Year with a DoS of 90% in the PM peak on A2034 Cherry Garden Avenue and B2062 Beachborough Road. The assessment predicts that the junction will be over capacity in all the future scenarios in both the peak hours. In both 2044 8.5k Do-Something and 2044 10k Do-Something, all arms are over capacity in the AM peak hour. In all of the Do-Something scenarios, all arms in the PM peak are over capacity. The highest DoS is 152% in 2044 8.5k Do-Something on B2062 Beachborough Road. For further discussion please see Section 10.4.

Table 75 J25: B2064 Cheriton Road / A2034 Cherry Garden Avenue capacity assessment

		AM Peak		PM Peak			
Fraffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
A2034 Cherry Garden Avenue	81.5%	15.6	86.2	90.0%	14.2	113.3	
B2064 Cheriton Road Westbound	84.1%	16.8	84.4	87.0%	12.2	73.4	
B2062 Beachborough Road	83.1%	20.6	79.1	90.0%	24.6	79.9	
A2034 Cheriton Road Eatbound	77.6%	16.8	78	84.5%	18.1	78.1	
		2037 DM					
A2034 Cherry Garden Avenue	99.9%	24.3	166.3	114.4%	36.5	374	
B2064 Cheriton Road Westbound	102.7%	22.2	92.5	112.6%	26.3	131.8	
B2062 Beachborough Road	107.4%	46	246.9	113.3%	67.1	314.3	
A2034 Cheriton Road Eatbound	103.1%	27.1	101.2	110.9%	33	145.2	
		2037 DS					
A2034 Cherry Garden Avenue	118.4%	47.7	437.8	126.8%	48.6	542.9	
B2064 Cheriton Road Westbound	117.5%	31	133.1	123.7%	34.8	158.4	
B2062 Beachborough Road	122.0%	75.8	451	131.5%	112.1	558.8	
A2034 Cheriton Road Eatbound	116.8%	47	176	131.6%	54.6	233.5	
		2044 8.5K D	М				
A2034 Cherry Garden Avenue	105.0%	30.9	234.9	116.8%	40	407.4	
B2064 Cheriton Road Westbound	107.2%	25.6	112.1	87.0%	21	77.7	
B2062 Beachborough Road	110.8%	53.8	295.5	121.3%	86.5	424.9	
A2034 Cheriton Road Eatbound	106.6%	30	117.7	115.2%	36.5	160.1	
		2044 8.5K D	S				
A2034 Cherry Garden Avenue	134.0%	66.7	639.2	150.0%	69.2	792.1	
B2064 Cheriton Road Westbound	124.1%	37.5	146	86.7%	25.2	66.8	
B2062 Beachborough Road	136.8%	107.1	636.6	152.0%	155.5	779.2	
A2034 Cheriton Road Eatbound	137.0%	68.9	268.8	143.7%	64.2	242.9	
		2044 10K D	M				
A2034 Cherry Garden Avenue	100.2%	24.8	169.7	114.4%	36.5	374	
B2064 Cheriton Road Westbound	108.5%	25.8	118.2	103.9%	22.5	96.6	
B2062 Beachborough Road	108.8%	49.1	266.3	116.7%	75.3	363	
A2034 Cheriton Road Eatbound	108.5%	31.6	129.8	112.4%	34.7	151.2	
		2044 10K D	S				
A2034 Cherry Garden Avenue	131.6%	63	610.8	146.8%	65.5	762.9	
B2064 Cheriton Road Westbound	119.7%	35	134.3	109.1%	28.3	92.9	
B2062 Beachborough Road	134.7%	102.1	612.8	145.6%	142.4	717.7	
A2034 Cheriton Road Eatbound	129.4%	60.4	228.5	139.8%	62	235.6	

10.3.31 J26: A259 Prospect Road / Stade Street

The A20 Ashford Road / Stone Street is a priority T-junction located in Hythe, to the east of J15 A259 / Dymchurch Road / Military Road. The junction is presented in Figure 51, and has been assessed in the PICADY module of Junctions9. The capacity assessments are presented in Table 76.

Figure 51 A259 Prospect Road / Stade Street

The PICADY assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year. The junction is predicted to be over capacity in all the assessed future scenarios in both the Do-Minimum and Do-Something. The highest RFC is 1.82 in 2044 8.5k Do-Something on Stade Street. The capacity issues identified are for vehicles exiting from State Street onto the A259 Prospect Road.

The modelling indicates there are likely to be capacity issues in all future year scenarios, for further discussion please see Section 10.4.

Table 76 J26: A259 Prospect Road / Stade Street capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
Stade Street	0.57	1.3	31.87	0.72	2.3	64.3	
A259 Rampart Road Eastbound	0.34	0.5	10.89	0.58	1.4	18.64	
		2037 DM					
Stade Street	0.84	3.9	99.25	1.09	11.5	271.77	
A259 Rampart Road Eastbound	0.51	1	14.73	0.65	1.8	23.66	
		2037 DS					
Stade Street	0.92	5.7	139.93	1.19	15.6	356.41	
A259 Rampart Road Eastbound	0.52	1.1	15.51	0.67	2	25.49	
		2044 8.5K D	M				
Stade Street	0.93	6.1	144.73	1.26	19.1	420.89	
A259 Rampart Road Eastbound	0.53	1.1	15.47	0.68	2.1	25.96	
		2044 8.5K E	S				
Stade Street	1.06	11	243.73	1.82	36.1	794.18	
A259 Rampart Road Eastbound	0.99	7.9	186.4	1.52	27.7	618.03	
		2044 10K D	М				
Stade Street	0.87	4.6	115.27	1.14	13.6	313.59	
A259 Rampart Road Eastbound	0.52	1.1	15.03	0.66	1.9	24.39	
		2044 10K D	S				
Stade Street	0.99	7.9	186.4	1.52	27.7	618.03	
A259 Rampart Road Eastbound	0.53	1.1	15.94	0.69	2.3	27.97	

10.3.32 J27: Barrow Hill Shuttle Signals

The Barrow Hill Shuttle signals are located at a heavily constrained location where the A20 narrows to a single lane under a railway bridge. The junction is quite isolated with the nearest main junction to the north being the A20 Ashford Road/Swan Lane which is approximately 400m away and to the south the A20 Ashford Road/Otterpool Lane junction which is approximately 1km away. The junction location is presented in Figure 52 and has been assessed in LinSig. The capacity assessments are presented in Table 77.

Figure 52 Barrow Hill Shuttle Signals

The LinSig assessment of this junction indicates that the junction operates well within capacity in the 2018 Base Year. The modelling predicts that the junction will be over capacity in all the assessed future scenarios in both the AM and PM peak hours in both the Do-Minimum and Do-Something. The highest DoS is 129.5% on Barrow Hill southbound in 2044 8.5k Do-Something in the PM peak hour.

The modelling indicates there are likely to be capacity issues in all future year scenarios; for further discussion please see Section 10.4 below.

Table 77 J27: Barrow Hill Shuttle Signals capacity assessment

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)			
2018									
Barrow Hill SB	50.7%	3.6	21.9	50.1%	3.8	20.7			
Barrow Hill NB	54.2%	4.4	20.4	48.6%	3.6	20.4			
		2037 DM							
Barrow Hill SB	99.2%	16.9	92.6	108.1%	33.4	194.2			
Barrow Hill NB	105.7%	35.3	154.4	104.6%	32.4	140.2			
2037 DS									
Barrow Hill SB	107.4%	36.1	180.4	105.0%	28.5	151.8			
Barrow Hill NB	106.9%	34.8	175	105.4%	32.9	153.3			
		2044 8.5K D	M						
Barrow Hill SB	100.4%	18.7	103.2	104.4%	27.3	144.8			
Barrow Hill NB	104.1%	31.2	134.2	107.4%	38.2	179.6			
		2044 8.5K D	S						
Barrow Hill SB	116.8%	62.2	305.3	129.5%	86.7	459.4			
Barrow Hill NB	123.1%	81.7	387.6	123.3%	93.2	388.5			
		2044 10K DI	М						
Barrow Hill SB	100.4%	18.7	103.2	103.3%	25	131.3			
Barrow Hill NB	101.8%	25.6	106.3	107.5%	38.7	181.8			
	•	2044 10K D	S						
Barrow Hill SB	117.0%	62.7	307.6	120.3%	67.7	350.9			
Barrow Hill NB	121.0%	75.4	362.1	128.9%	106	454.3			

10.3.33 SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads

The A260 Spitfire Way junction is a four-arm roundabout connecting to SH19 Alkham Valley Road roundabout and SH16 A260 Canterbury Road / Alkham Valley Road priority T-junction. The junction is presented in Figure 53, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 78.

Figure 53 SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads

The junction operates at capacity in the Base Year, with an RFC of 0.85 in the PM peak hour on the A20 Slip Road. The capacity assessment predicts that the junction will be over capacity in all the assessed future scenarios in both peak hours in both the Do-Minimum and Do-Something. The A20 Slip Road has capacity issues in the AM and PM for all assessed years, with a maximum RFC of 1.15 in 2044 8.k Do-Something. In the AM peak hour, Spitfire Way is also predicted to experience capacity issues.

Table 78 SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads capacity assessment

		AM Peak			PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)		
	· · · · ·	2018	()		1			
White House Hill	0.43	0.8	6.85	0.26	0.3	4.1		
A20 Slip Roads	0.55	1.2	7.17	0.85	5.2	15.89		
Canterbury Road	0.37	0.6	3.65	0.61	1.5	6.8		
Spitfire Way	0.78	3.4	11.22	0.54	1.2	5.67		
		2037 DM						
White House Hill	0.57	1.3	10.47	0.33	0.5	5.06		
A20 Slip Roads	0.87	5.9	26.3	0.91	8.5	26.67		
Canterbury Road	0.42	0.7	4.27	0.76	3.1	11.62		
Spitfire Way	0.92	9.3	28.09	0.67	2	8.26		
		2037 DS						
White House Hill	0.61	1.6	11.6	0.37	0.6	5.44		
A20 Slip Roads	0.95	11.6	48.46	1.01	26.8	72.43		
Canterbury Road	0.43	0.8	4.45	0.77	3.3	12.23		
Spitfire Way	0.94	11.7	35.23	0.69	2.2	8.83		
		2044 8.5K I	OM		_	_		
White House Hill	0.61	1.5	11.79	0.34	0.5	5.23		
A20 Slip Roads	0.92	9.1	39.47	0.96	15.2	45.22		
Canterbury Road	0.43	0.8	4.4	0.79	3.6	13.35		
Spitfire Way	0.95	13.2	38.62	0.69	2.2	8.87		
		2044 8.5K I	os					
White House Hill	0.7	2.2	15.17	0.4	0.7	5.82		
A20 Slip Roads	1.06	36.7	124.54	1.15	101.6	223.38		
Canterbury Road	0.44	0.8	4.54	0.78	3.4	12.46		
Spitfire Way	0.98	19.6	55.07	0.71	2.4	9.63		
		2044 10K E	M					
White House Hill	0.58	1.4	10.97	0.33	0.5	5.13		
A20 Slip Roads	0.9	7.3	32.11	0.93	10.9	33.51		
Canterbury Road	0.43	0.7	4.34	0.77	3.3	12.2		
Spitfire Way	0.93	10.5	31.44	0.68	2.1	8.48		
		2044 10K E)S					
White House Hill	0.68	2.1	14.51	0.4	0.7	5.74		
A20 Slip Roads	1.04	31.6	109.7	1.13	91.2	201.46		
Canterbury Road	0.44	0.8	4.53	0.77	3.2	11.86		
Spitfire Way	0.96	15.8	46.02	0.7	2.3	9.29		

Otterpool Park

Transport Assessment

The modelling indicates there are likely to be capacity issues in all future year scenarios; for further discussion please see Section 10.4 below.

10.3.34 SH19 Alkham Valley Road / A20 slip roads

Junction SH19 is a four-arm roundabout connecting to SH18 A260 Spitfire Way roundabout and SH16 A260 Canterbury Road / Alkham Valley Road priority T-junction. The junction is presented in Figure 54, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 79.

Figure 54 SH19 Alkham Valley Road / A20 slip roads

The junction operates at capacity in the Base Year, with an RFC of 0.84 in the AM peak. The capacity assessment predicts that the junction will be over capacity in all the assessed future scenarios in both Do-Minimum and Do-Something. The capacity issues are on Alkam Valley Road (South), with the highest RFC of 1.21 precited to be in 2044 8.5k Do-Something in the AM peak.

Table 79 SH19 Alkham Valley Road / A20 slip roads capacity assessment

		AM Peak		PM Peak			
approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2018					
A20 Offslip	0.03	0	1.88	0.05	0	2.09	
Alkam Valley Road (East)	0.5	1	3.85	0.24	0.3	2.53	
Alkam Valley Road (South)	0.84	5.1	17.2	0.74	2.8	8.86	
		2037 DM					
A20 Offslip	0.02	0	1.95	0.03	0	2.1	
Alkam Valley Road (East)	0.53	1.1	4.04	0.25	0.3	2.55	
Alkam Valley Road (South)	1.07	57.8	141.23	0.87	6.3	17.95	
		2037 DS					
A20 Offslip	0.02	0	1.94	0.02	0	2.12	
Alkam Valley Road (East)	0.53	1.1	4.04	0.25	0.3	2.54	
Alkam Valley Road (South)	1.11	78	182.73	0.91	8.6	23.64	
		2044 8.5K E	M				
A20 Offslip	0.02	0	1.95	0.05	0.1	2.13	
Alkam Valley Road (East)	0.54	1.2	4.18	0.27	0.4	2.64	
Alkam Valley Road (South)	1.13	90.1	211.98	0.9	8.1	22.52	
		2044 8.5K [os				
A20 Offslip	0.02	0	1.94	0.05	0.1	2.12	
Alkam Valley Road (East)	0.54	1.2	4.17	0.26	0.4	2.62	
Alkam Valley Road (South)	1.21	135.9	338.37	0.95	13.6	36.32	
		2044 10K D	M				
A20 Offslip	0.02	0	1.95	0.05	0	2.11	
Alkam Valley Road (East)	0.53	1.1	4.09	0.26	0.4	2.6	
Alkam Valley Road (South)	1.1	73.4	175.22	0.88	7	19.81	
		2044 10K D	S				
A20 Offslip	0.02	0	1.94	0.03	0	2.12	
Alkam Valley Road (East)	0.53	1.1	4.09	0.26	0.3	2.56	
Alkam Valley Road (South)	1.18	117.5	277.14	0.94	11.8	31.8	

Otterpool Park

Transport Assessment

Based on the modelling the Alkham Valley Road/ A20 Slip Road Roundabout will require an intervention to improve the performance of the Alkham Valley Road south approach. This requirement is independent of the Otterpool development as the junction is already forecast to operate above capacity in the DM 2037 scenario. The modelling indicates there are likely to be capacity issues in all future year scenarios; for further discussion please see Section 10.4 below.

10.3.35 SH16 A260 Canterbury Road / Alkham Valley Road

The A260 Canterbury Road / Alkham Valley Road is a priority T-junction connecting to SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads roundabout and SH19 Alkham Valley Road / A20 slip roads roundabout. The junction is presented in Figure 55, and has been assessed in the PICADY module of Junctions9 (Junction 9?). The capacity assessments are presented in Table 80.

Figure 55 SH16 A260 Canterbury Road / Alkham Valley Road

The PICADY assessment indicates that the junction is within capacity in the Base Year. The capacity assessment predicts that the junction will be over capacity in all the assessed future scenarios in both the AM and PM peak hours in both the Do-Minimum and Do-Something. The RFC values indicated in both 2044 8.5k Do-Something and 2044 10k Do-Something in the PM peak hour on Alkham Valley Road show that the predicted traffic volumes are far in excess of the junction capacity.

Based on the local junction modelling the A260 Canterbury Road / Alkham Valley Road T-junction will require an intervention to improve its performance. This requirement is independent of the Otterpool development as the junction is already forecast to operate above capacity in the DM 2037 scenario.

Table 80 SH16 A260 Canterbury Road / Alkham Valley Road capacity assessment

		AM Peak		PM Peak		
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)
		2018				
Alkham Valley Road	0.56	1.3	18.13	0.31	0.4	10.57
Canterbury Road Northbound	0.45	0.8	21.37	0.55	1.2	22.92
		2037 DM				
Alkham Valley Road	0.18	0.2	100.18	0.37	0.5	131.43
Canterbury Road Northbound	1.1	14.8	257.36	0.97	9.6	125.32
		2037 DS				
Alkham Valley Road	0.62	1.5	24.9	0.62	1	322.68
Canterbury Road Northbound	1.18	19.9	338.26	1.07	17.3	209.95
		2044 8.5K D	M			
Alkham Valley Road	0.62	1.5	24.83	0.4	0.5	219.48
Canterbury Road Northbound	1.27	25.9	419.58	1.04	15	180.76
		2044 8.5K E	os			
Alkham Valley Road	1.11	10.3	134.48	999999999	49.4	666.25
Canterbury Road Northbound	1.53	39	644.75	1.26	35	404.72
		2044 10K D	M			
Alkham Valley Road	0.6	1.4	23.31	0.35	0.5	152.38
Canterbury Road Northbound	1.17	19.8	329.02	1	11.9	148.55
		2044 10K D	S			
Alkham Valley Road	0.65	1.7	28.52	999999999	3.1	764.75
Canterbury Road Northbound	1.38	31.4	521.06	1.21	30.7	358.08

Otterpool Park
Transport Assessment
The modelling indicates there are likely to be capacity issues in all future year scenarios; for further discussion please see Section 10.4 below.

10.3.36 J31: A20 Ashford Road access to P1B & P7

Junction 31 is a signalised crossroads on A20 Ashford Road west of junction with B2067 Otterpool Lane providing access into development zones 1B and 7.

The junction has been assessed for the future 2037 DS, 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 81. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 81 J31: A20 Ashford Road access to P1B & P7 capacity assessment

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU			
2037 DS									
A20 Ashford Road Westbound	46.2%	10.6	12.3	38.9%	7.6	8.8			
Access to zone	57.2%	7.7	58.7	51.6%	5.7	62.4			
Barrow Hill/Ashford Road North	31.0%	6.6	19.2	30.8%	6.1	18			
		2044 8.5K D	S						
A20 Ashford Road Westbound	56.8%	12.5	14.9	48.3%	9.9	8.1			
Access to zone	60.7%	10.4	52.2	60.6%	6.8	66.1			
Barrow Hill/Ashford Road North	42.6%	9.4	26.4	42.8%	8.2	21.5			
2044 10K DS									
A20 Ashford Road Westbound	53.4%	11.1	13.5	49.2%	9.7	8.4			
Access to zone	58.7%	10.2	50.7	60.9%	6.8	65.9			
Barrow Hill/Ashford Road North	38.1%	8.1	26.2	44.4%	8.4	23			

10.3.37 J32: A20 Ashford Road access to P6

Junction 32 will be a priority junction on A20 east of junction with B2067 Otterpool Lane providing access into development zone 6. The junction has been assessed in the PICADY module of Junction 9.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 82. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 82 J32: A20 Ashford Road access to P6 capacity assessment

	AM Peak			PM Peak				
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)		
2044 8.5K DS								
Access	0.43	0.70	12.65	0.20	0.30	8.58		
A20 Ashford Road Eastbound	0.22	0.30	9.28	0.38	0.60	10.89		
2044 10K DS								
Access	0.41	0.7	12.2	0.2	0.2	8.43		
A20 Ashford Road Eastbound	0.21	0.3	9.07	0.41	0.7	11.34		

10.3.38 J33: A20 Ashford Road Link Road west

Junction 33 will be a signalised junction between Otterpool Avenue and the A20 Ashford Road to the west of Newingreen. The junction has been assessed in LinSig.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 83. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 83 J33: A20 Ashford Road Link Road west capacity assessment

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)			
2044 8.5K DS									
A20 Ashford Road Westbound	38.7%	1.9	21.8	74.1%	11.7	27.4			
A20 Ashford Road Eastbound	64.9%	15.1	21	66.8%	12.1	35			
Access to zone P1C	61.2%	7.1	46.5	66.7%	8.1	46.2			
		2044 10K D	S						
A20 Ashford Road Westbound	40.1%	2.1	22.1	75.5%	12.2	27.7			
A20 Ashford Road Eastbound	64.3%	15	20.9	64.6%	11.8	33.4			
Access to zone P1C	61.0%	6.9	46.6	66.6%	7.9	46.3			

10.3.39 J34 A20 Ashford Road access to P1A & P2A

Junction 34 will be a non-signalised T-junction between the existing A20 Ashford Road and the new High Street south of Otterpool Avenue. The junction has been assessed in the PICADY module of Junction 9.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 84. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 84 J34 A20 Ashford Road access to P1A & P2A capacity assessment

	AM Peak			PM Peak				
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)		
2044 8.5K DS								
High Street	0.59	1.4	19.55	0.66	1.9	18.86		
Ashford Road Eastbound	0.12	0.1	7.42	0.14	0.2	8.84		
2044 10K DS								
High Street	0.66	1.9	24.71	0.72	2.5	23.84		
Ashford Road Eastbound	0.15	0.2	7.61	0.16	0.2	9.04		

10.3.40 J35 A20 Ashford Road Link Road east

A20 Ashford Road Link Road east will be a signalised T-junction between Otterpool Avenue and A20 Ashford Road. The junction has been assessed in LinSig.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 85. The junction is predicted to operate within capacity in all of the assessed scenarios. The highest DoS is 89.8% on the access to zone P1C in the 2044 8.5k Do-Something.

Table 85 J35:A20 Ashford Road Link Road east capacity assessment

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU			
2044 8.5K DS									
A20 Ashford Road North	71.3%	12.3	27.8	81.8%	17	20.1			
A20 Ashford Road South	89.5%	27.3	51.6	80.1%	12.7	49.3			
Access to zone P1C	89.8%	28.1	46.4	78.0%	18.5	21.1			
		2044 10K D	S						
A20 Ashford Road North	69.2%	11.6	27.5	80.4%	15.7	19.5			
A20 Ashford Road South	87.4%	25.9	48.5	79.4%	12.5	48.7			
Access to zone P1C	86.7%	25.7	41.9	76.0%	17.7	20.2			

10.3.41 J36 A20 Ashford Road Link Road / High Street

Junction 36 will be a signalised T-junction between the dualled section of A20 Ashford Road and the access road to the Business Park. The junction has been assessed in LinSig.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 86. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 86 J36: A20 Ashford Road Link Road / High Street capacity assessment

		AM Peak		PM Peak			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	
		2044 8.5K D	S				
A20 As hford Road Southbound	88.5%	19.4	64.8	64.8%	12.6	9.5	
A20 As hford Road Northbound	89.4%	26.8	38.4	72.3%	15	28.5	
Access to Zone P2C	29.0%	1.3	73.7	71.1%	12.5	33	
		2044 10K D	S				
A20 As hford Road Southbound	88.3%	19.3	64.5	66.4%	13.2	9.8	
A20 As hford Road Northbound	85.3%	25.4	42.6	73.4%	15.6	28.1	
Access to Zone P2C	29.8%	1.4	74	72.9%	12.9	34.6	

10.3.42 J38: Otterpool Lane Access to Zone P2B & P3B

Junction 38 is a staggered priority junction between B2067 Otterpool Lane (major arm) and access into development zones 2B and 3A (minor arms). The junction has been assessed in PICADY module of Junctions9.

The junction has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 87. The junction is predicted to operate within capacity in all the assessed scenarios in both the AM and PM peak.

Table 87 J38: Otterpool Lane Access to Zone P2B & P3B capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	
		2044 8.5K D	S				
Access 1	0.42	0.7	12.34	0.42	0.7	18.24	
Otterpool Lane Southbound	0.01	0.0	5.57	0.07	0.1	5.91	
Access 2	0.33	0.5	12.43	0.16	0.2	10.39	
Otterpool Lane Northbound	0.18	0.4	7.3	0.59	2.1	12.08	
		2044 10K D	S				
Access 1	0.36	0.6	11.15	0.41	0.7	17.39	
Otterpool Lane Southbound	0.01	0.0	5.51	0.07	0.1	5.87	
Access 2	0.20	0.3	10.23	0.18	0.2	10.65	
Otterpool Lane Northbound	0.18	0.4	7.41	0.64	2.5	13.37	

10.3.43 J39 Internal link road

Junction 39 will be a signalised crossroads between Otterpool Avenue and the new High Street. The junction has been assessed in LinSig.

The currently proposed junction arrangement has been assessed for the future 2044 8.5k DS and 2044 10k DS scenarios. The capacity assessments are presented in Table 88. The junction is predicted to operate within capacity in all the assessed scenarios. The highest DoS is 78.0% on the western Link Road.

Table 88 J39: Internal link road capacity assessment

		AM Peak		PM Peak			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU	
		2044 8.5K D	s				
High Street North	61.9%	3.5	2.0	76.4%	5.7	3.4	
Link Road East	22.6%	3.1	0.9	24.2%	3.5	1.0	
Link Road West	63.5%	12.9	3.8	76.6%	17.3	5.6	
		2044 10K D	S				
High Street North	60.0%	3.4	1.9	77.3%	5.8	3.5	
Link Road East	22.1%	3	0.8	23.7%	3.4	0.9	
Link Road West	64.1%	13.2	3.8	78.0%	18	5.8	

Otterpool Park

Transport Assessment

10.3.44 J42: M20 Junction 10A

The M20 Junction 10A is a large signalised junction, which works in concert with M20 Junction 10 (Lacton Interchange) to provide access to the east of Ashford. The junction is presented in Figure 56, and has been assessed in LinSig. The capacity assessments are presented in Table 89.

Figure 56 M20 Junction 10A

The junction is predicted to operate over capacity in all future scenarios in the Do-Minimum and Do-Something in the PM peak hour. In the Do-Minimum scenarios, the M20 Eastbound Off-Slip is predicted to be over capacity. In the Do-Something scenarios the M20 Eastbound Off-Slip and A2070 Bad Munstereifel Road are anticipated to experience capacity issues. The highest DoS is 131.1% in 2044 10 Do-Something in the PM on the M20 eastbound off-slip.

The modelling indicates there is likely to be a capacity issue in the Do-Something scenarios, for further discussion and proposed mitigation please see Section 10.4.

Table 89 J42: M20 Junction 10A capacity assessment

		AM Peak		PM Peak			
Fraffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delag per PCU (secs)	
		2037 DM					
M20 Eastbound Off-Slip	70.6%	5.2	30.6	104.5%	31.9	139.1	
Hythe Road Eastbound	52.5%	1.8	4	48.9%	2.1	5.8	
Hythe Road Westbound	71.0%	1.2	4.1	65.0%	0.9	3.9	
M20 Westbound Off-Slip	75.0%	7.6	24.4	61.1%	4.8	23.1	
A2070 Bad Munstereifel Road	69.1%	5.7	2.9	81.4%	8.4	4.4	
		2037 DS					
M20 Eastbound Off-Slip	76.3%	6	33.9	126.2%	96.3	423	
Hythe Road Eastbound	52.9%	2.2	5.3	39.8%	1.5	6.3	
Hythe Road Westbound	71.6%	1.3	4.3	57.8%	0.7	3.2	
M20 Westbound Off-Slip	79.9%	9.6	23.6	68.0%	6.2	22.8	
A2070 Bad Munstereifel Road	77.3%	8	4	91.4%	14.3	9.1	
		2044 8.5K D	M				
M20 Eastbound Off-Slip	77.8%	7	31.4	120.3%	82.1	351	
Hythe Road Eastbound	56.1%	2.3	4.6	46.9%	2.1	6.1	
Hythe Road Westbound	74.4%	1.7	4.8	64.4%	0.9	3.8	
M20 Westbound Off-Slip	75.2%	8	23.4	63.0%	5.1	23.6	
A2070 Bad Munstereifel Road	79.2%	9.6	4.3	88.7%	13.4	7.1	
		2044 8.5K D	S				
M20 Eastbound Off-Slip	74.8%	5.8	32.9	130.5%	103.6	473.1	
Hythe Road Eastbound	57.4%	2.7	6.4	42.8%	1.6	8.4	
Hythe Road Westbound	83.0%	2.4	7.3	66.6%	1	4	
M20 Westbound Off-Slip	86.1%	11.5	28.6	71.8%	6.8	24.2	
A2070 Bad Munstereifel Road	84.1%	11.5	6.2	100.9%	111.4	48.7	
		2044 10K D	M				
M20 Eastbound Off-Slip	81.8%	8.1	32.9	115.6%	66.5	290.9	
Hythe Road Eastbound	55.7%	2.4	4.6	47.2%	2.2	6.1	
Hythe Road Westbound	75.1%	2.4	5	64.7%	0.9	3.9	
M20 Westbound Off-Slip	82.5%	8.9	30.5	62.6%	5.1	23.5	
A2070 Bad Munstereifel Road	79.0%	8.6	4.2	87.7%	12.4	6.5	
		2044 10K D	S				
M20 Eastbound Off-Slip	32.8%	1.8	22.8	130.0%	68.8	474.5	
Hythe Road Eastbound	53.2%	2.2	4.9	36.6%	1.1	5.5	
Hythe Road Westbound	84.9%	5.4	8.2	75.7%	5.1	6.7	
M20 Westbound Off-Slip	73.8%	6.9	26.3	72.6%	6.1	28.4	
A2070 Bad Munstereifel Road	86.9%	11.3	7.2	102.7%	136.3	72.5	

10.3.45 J43 A20 Ashford Road small roundabout

The A20 Ashford Road small roundabout is located to the south of the M20 Junction 11. The junction effectively operates as a two-arm roundabout, facilitating a u-turn from A20 Ashford Road from Sandling to the north of the junction to access M20 Junction 11.

The junction is presented in Figure 57, and has been assessed in the ARCADY module of Junctions9. The capacity assessments are presented in Table 90.

Figure 57 A20 Ashford Road small roundabout

The ARCADY assessment shows that the junction is within capacity in the Base Year. The capacity assessment highlights that the junction is marginally over capacity in the 2044 8.5k Do-Something AM peak with an RFC of 0.89 and in the 2044 10k Do-Something AM peak with an RFC of 0.88, both on A20 Ashford Road northbound.

The modelling indicates there may be a capacity issue in the Do-Something scenarios, for further discussion please see Section 10.4.

Table 90 J43: A20 Ashford Road small roundabout capacity assessment

		AM Peak		PM Peak			
Approach	RFC	Queue Length (vehicles)	Av. Delay /veh	RFC	Queue Length (vehicles)	Av. Delay /veh	
		2037 DM					
A20 Ashford Road Southbound	0.51	1.1	2.53	0.48	0.9	2.28	
A20 Ashford Road Northbound	0.46	0.8	2.77	0.4	0.7	2.23	
		2037 DS					
A20 Ashford Road Southbound	0.65	1.9	3.47	0.68	2.2	3.68	
A20 Ashford Road Northbound	0.81	4.1	7.43	0.7	2.3	4.39	
		2044 8.5K D	M				
A20 Ashford Road Southbound	0.53	1.1	2.59	0.49	1	2.33	
A20 Ashford Road Northbound	0.49	1	2.97	0.42	0.7	2.32	
		2044 8.5K D	S				
A20 Ashford Road Southbound	0.79	3.8	5.74	0.72	2.6	4.17	
A20 Ashford Road Northbound	0.89	7.9	13.23	0.84	5.2	8.17	
		2044 10K D	M				
A20 Ashford Road Southbound	0.52	1.1	2.57	0.48	0.9	2.29	
A20 Ashford Road Northbound	0.49	0.9	2.93	0.42	0.7	2.3	
		2044 10K D	S				
A20 Ashford Road Southbound	0.79	3.6	5.54	0.71	2.5	4.04	
A20 Ashford Road Northbound	0.88	7	11.72	0.84	5.1	7.99	

10.3.46 J44: Old Dover Road / St Lawrence Road / The Drive and Nackington Road / Old Dover Road

Old Dover Road / St Lawrence Road / The Drive and Nackington Road / Old Dover Road comprises of two signalised junctions located in Canterbury. The junction is presented in Figure 58, and has been assessed in LinSig. The capacity assessments are presented in Table 91 and Table 92.

Figure 58 Old Dover Road / St Lawrence Road / The Drive and Nackington Road / Old Dover Road

In the base year, the junction is over capacity in both the AM and PM Peak hours, with the highest DoS being 100.7% in the PM peak on Old Dover Road Eastbound on Old Dover Road / St Lawrence Road / The Drive junction.

Table 91 J44: Old Dover Road / St Lawrence Road / The Drive capacity assessment

		AM Peak		PM Peak			
raffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
B2068 Old Dover Road Westbound	98.0%	27.2	85.2	82.1%	6	27.5	
The Drive	49.3%	2.5	65.8	89.1%	6.8	133.3	
Old Dover Road Eastbound	95.3%	14.7	103.4	100.7%	29.1	122.3	
B2068 St Lawerence Road	99.4%	16	142	77.4%	7.5	73.2	
		2037 DM					
B2068 Old Dover Road Westbound	74.2%	9.9	49.1	69.6%	7.9	57.7	
The Drive	75.2%	13.7	31.8	60.5%	7.6	30.5	
Old Dover Road Eastbound	21.3%	1.9	35.2	70.4%	4.5	74.6	
B2068 St Lawerence Road	52.0%	7.9	25.9	74.2%	16.4	27.9	
		2037 DS					
B2068 Old Dover Road Westbound	75.0%	10.1	49.6	68.9%	8.1	55.9	
The Drive	76.7%	14.3	32.7	70.5%	7.4	34.1	
Old Dover Road Eastbound	21.8%	1.9	35.4	71.6%	4.6	75.1	
B2068 St Lawerence Road	52.5%	8	26	76.3%	17.1	29.6	
		2044 8.5K D	M				
B2068 Old Dover Road Westbound	78.3%	10.9	52.2	73.3%	8.6	60.3	
The Drive	79.8%	15.7	34.3	77.1%	7.2	37.1	
Old Dover Road Eastbound	22.1%	1.9	35.5	78.2%	5	88.8	
B2068 St Lawerence Road	54.9%	8.5	26.6	78.4%	18.1	30.1	
		2044 8.5K D	S				
B2068 Old Dover Road Westbound	79.9%	11.2	53.6	77.1%	9.3	63.4	
The Drive	81.9%	16.4	35.8	87.8%	6.9	44.6	
Old Dover Road Eastbound	22.4%	1.9	35.7	89.3%	6.4	126.4	
B2068 St Lawerence Road	55.6%	8.8	26.9	79.7%	18.7	30.8	
		2044 10K D	М				
B2068 Old Dover Road Westbound	78.3%	10.9	52.2	73.3%	8.6	60.3	
The Drive	79.8%	15.7	34.3	77.1%	7.2	37.1	
Old Dover Road Eastbound	22.1%	1.9	35.5	78.2%	5	88.8	
B2068 St Lawerence Road	54.9%	8.5	26.6	78.4%	18.1	30.1	
		2044 10K D	s				
B2068 Old Dover Road Westbound	80.3%	11.3	54	77.4%	9.3	63.7	
The Drive	82.1%	16.7	35.9	89.1%	7.3	47.4	
Old Dover Road Eastbound	22.7%	1.9	35.8	89.3%	6.4	126.4	
B2068 St Lawerence Road	55.6%	8.8	26.9	79.8%	18.8	30.8	

Otterpool Park

Transport Assessment

The future scenarios incorporate committed junction improvements associated with the Mountfield Park development. With the inclusion of these junction improvements, the junctions perform substantially better in the future scenarios than in the base. It can be seen that the junctions operate within capacity in the Do-Something scenarios and therefore do not require further discussion.

Table 92 J44: Nackington Road / Old Dover Road capacity assessment

_	ĺ	AM Peak			PM Peak		
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
		2018					
Old Dover Road Westbound	63.5%	9.2	53.2	84.7%	10	80.9	
B2068 Nackington Road	96.8%	24.7	93.9	83.8%	10.4	68	
B2068 Old Dover Road Eastbound	64.2%	9.4	40.4	64.6%	6.1	12	
		2037 DM					
Old Dover Road Westbound	61.3%	9.7	49.3	73.0%	9.4	57.9	
B2068 Nackington Road	74.5%	16.6	34.8	72.8%	6.4	36.5	
B2068 Old Dover Road Eastbound	62.2%	10.1	33.8	74.6%	11.5	22.3	
		2037 DS					
Old Dover Road Westbound	63.7%	9.9	51.2	52.8%	7.9	41.2	
B2068 Nackington Road	76.6%	17.3	35.3	76.6%	8.2	42.5	
B2068 Old Dover Road Eastbound	62.1%	10.2	33.1	76.5%	12	21.7	
		2044 8.5K D	M				
Old Dover Road Westbound	65.2%	10.4	50.8	54.3%	8.4	40.7	
B2068 Nackington Road	79.8%	19.6	37.7	80.0%	8.9	45.7	
B2068 Old Dover Road Eastbound	67.3%	11.1	36	79.8%	13.1	24.4	
		2044 8.5K D	S				
Old Dover Road Westbound	65.6%	10.6	50.9	34.8%	6.4	23.9	
B2068 Nackington Road	81.1%	20.5	38.6	86.7%	13.5	64.3	
B2068 Old Dover Road Eastbound	70.1%	11.9	37.4	83.0%	14.6	24.9	
		2044 10K DI	M				
Old Dover Road Westbound	65.2%	10.4	50.8	54.3%	8.4	40.7	
B2068 Nackington Road	79.8%	19.6	37.7	80.0%	8.9	45.7	
B2068 Old Dover Road Eastbound	67.3%	11.1	36	79.8%	13.1	24.4	
		2044 10K D	S				
Old Dover Road Westbound	65.6%	10.6	50.9	34.8%	6.4	23.9	
B2068 Nackington Road	81.2%	20.6	38.7	86.8%	13.6	64.4	

10.4 Highway Mitigation

- 10.4.1 Where highlighted in Section 10.3 above, this section provides additional discussion and where appropriate, proposed mitigation for junctions which are predicted to be over-capacity in the Do-Something scenarios.
- 10.4.2 As previously discussed, there is a strong emphasis on the Monitor and Manage approach in bringing forward the Otterpool Park development. Given the worst-case nature of the trip generation exercise, it is inappropriate to bring forward infrastructure which provides excessive capacity and encourages additional private vehicle trips on the network.
- 10.4.3 Ongoing discussions have been held with the Local Authority to determine and agree where mitigation would be suitable and this section reflects these discussions.

J1: M20 Junction 10

- 10.4.4 M20 Junction 10 has recently been partially replaced and supplemented by the construction of M20 Junction 10a which provides significant additional highway capacity in this location. Junctions 10 and 10a operate together with it being likely that traffic delay would balance across the two junctions.
- 10.4.5 The modelling reports that the Kennington Road approach to the junction is predicted to go over-capacity in the 2044 10,000 Homes Do-something scenario, while the signalised T-junction to the west of the main junction which provides access to the M20 EB on-slip is predicted to go over-capacity in the 2037 Do-Something scenario, and in all 2044 scenarios.
- 10.4.6 However, given that M20 Junction 10a has been recently opened, there is significant uncertainty about what the future performance and capacity of this junction and M20 Junction 10 would be like. While there is the potential to mitigate this junction to bring the junction within capacity, how this would impact M20 Junction 10 operation and whether it would relieve the potential capacity issues here requires discussion with National Highways regarding an appropriate way forward.

J2: M20 Junction 11

- 10.4.7 M20 Junction 11 forms the primary access to the M20 and the wider strategic road network from Otterpool Park. As previously discussed, the modelling indicates that in all Do-Something scenarios this junction is likely to go over capacity.
- 10.4.8 The proposed mitigation requires the partial signalisation of the roundabout specifically signalisation of the M20 Eastbound and Westbound offslips, as well as the Northbound entry from the A20, as well as their corresponding circulatory carriageway sections. The proposed layout is shown in drawing 10029956-ARC-XX-XX-DR-HE-0036 (Appendix I). The modelling indicates that partially signalising the junction would result in the junction operating within capacity, as shown in the AM and PM Peak periods, respectively, in Table 93 and Table 94:

Table 93 M20 Junction 11 AM Peak

	2044 8	2044 8.5k DS No Mitigation			2044 8.5k DS With Mitigation			
Traffic Movement	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)		
M20 OffSlip Westbound	1.08	70.80	146.96	82.1%	11.5	24.4		
A20 Ashford Road	1.03	59.80	76.21	18.4%	1	5.6		
Services	0.37	0.60	12.48	18.4%	1	5.6		
M20 OffSlip Eastbound	1.16	65.80	231.89	81.4%	8.1	36.6		
B2068	0.74	2.70	18.85	57.4%	1.3	7.6		

Table 94 M20 Junction 11 PM Peak

	2044 8	.5k DS No Mit	igation	2044 8.5k DS With Mitigation			
Traffic Movement	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
M20 OffSlip Westbound	0.98	19.10	50.48	82.2%	12.5	29.3	
A20 Ashford Road	1.00	33.10	47.98	80.8%	10.8	11.7	
Services	0.33	0.50	10.57	16.6%	1	5.5	
M20 OffSlip Eastbound	1.51	193.40	698.91	87.1%	11.7	43.3	
B2068	0.96	11.50	71.90	81.8%	7	24	

J7B: A20 Hythe Road / The Street

10.4.9 The roundabout junction between A20 Hythe Road and The Street appears to go over capacity in the 2044 Do-Something scenarios. However, given the junction is a reasonable distance from Otterpool Park, and localised widening of the roundabout entry appears feasible, if necessary, a monitor and manage approach to determine whether mitigation is required in the future is appropriate.

J11: A20 Ashford Road / Stone Street / Hythe Road (Newingreen Junction)

- 10.4.10 The junction of the A20 Ashford Road with Stone Street and Hythe Road has been the focus of a separate study in order to determine the most appropriate junction arrangement for this location, in the wider context of Otterpool Park.
- 10.4.11 It has been determined that a fully signalised four arm junction is the most appropriate junction here, as the A20 through Newingreen will retain the bulk of the strategic traffic east-west through the area, while Otterpool Avenue will also provide some east-west capacity. For full details please see Appendix I. The proposals detailed would result in the junction capacity results shown in Table 95, below.

Table 95 2044 8.5k Do-Something Results for Junction 11 Newingreen Junction

		AM Peak		PM Peak			
Approach	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
	70.0%	10.9	19.9	79.9%	16.6	21.0	
Ashford Road Southbound	84.9%	6.1	38.2	87.8%	12.0	42.2	
A261 Hythe Road Westbound	85.0%	6.7	42.7	87.8%	7.2	65.3	
Stone Street Northbound	86.0%	7.6	46.3	49.7%	2.5	40.9	
A20 Ashford Road Eastbound	85.8%	10.5	33.1	87.0%	11.4	38.4	

J12: Aldington Road / Lympne Hill

- 10.4.12 The junction capacity modelling indicates that in the 2044 Do-Something scenarios, in the PM peak, the right-turn movement from Aldington Road into Lympne Hill is potentially over-capacity.
- 10.4.13 However, given the junction configuration and the dominant right-turn movement it is considered likely that any impact at this location would not be severe. Arcadis also understands that there are ongoing investigations regarding the possibility of closing Adlington Road to the east of this junction. Therefore, including this location in the monitor and manage approach to determine in the future whether mitigation is necessary and appropriate is recommended.

J14: A261 London Road / Barrack Hill

- 10.4.14 The modelling results for this junction indicate that in the 2044 Do-Something PM peak period the giveway movement from Barrack Hill is likely to go overcapacity.
- 10.4.15 However, to the south of this junction, there is a signalised junction (Scalons Bridge Road/A259 Military Road) which should aid capacity from Barrack Hill as vehicles should create platoons creating additional gaps for vehicles exiting Barrack Hill. Therefore, it is proposed that the operation of this junction is monitored to establish mitigation if required in the future.

J15: A259 / Dymchurch Road / Military Road Gyratory

- 10.4.16 The gyratory appears to be overcapacity in all future scenarios including the 2037 Do-Minimum scenario. The traffic associated with Otterpool Park in the Do-Something scenarios does not appear to have a severe impact on the operation of the gyratory over and above the Do-Minimum scenarios.
- 10.4.17 Arcadis understands that there are currently proposals to introduce additional signalised pedestrian crossing points at the existing traffic signals. Should these be introduced, it would have the effect of reducing vehicular capacity further.
- 10.4.18 This is a constrained location with limited opportunities for physical interventions to improve capacity for motor vehicles. However, increasing local parking restrictions such as adding double yellow lines in the vicinity of the pedestrian crossing on Military Road outside the Sainsburys would improve the operation of this signalised crossing for vehicles.
- 10.4.19 Given the limited impact Otterpool Park is having at this location, as well as the constrained location and desirability of improving access for non-car modes, no mitigation beyond that described above is proposed.

J17: A20 Ashford Road / A20 Junction 11 LILO

10.4.20 The proposed mitigation of the M20 Junction 11 located to the north of the junction would involve the approach to this junction being signalised, which may platoon vehicles from the north allowing additional gaps in traffic for vehicles to exit from Ashford Road. Therefore, it is proposed that the operation of this junction is monitored to establish if mitigation if required in the future.

J21a: M20 Junction 13 (Castle Hill Interchange)

- 10.4.21 The junction modelling results at this junction were discussed with Kent County Council, Folkestone & Hythe District Council and National Highways. It was agreed that the results suggested that the Otterpool Park development would not have a severe impact at this junction and that, subject to further review by all three authorities, no mitigation would be proposed for this junction.
- 10.4.22 During a period when mitigation options were discussed, a potential improvement at the junction was identified. The Churchill Avenue approach consists of a single long lane that widens to two lanes approximately 75m and then to three lanes approximately 20m before the give way line. The Churchill Avenue exit is two lanes that taper down to one wide 4.5m lane. If the exit lane were to taper down to a standard lane width it would allow for the two-lane section on the Churchill Approach to be extended further back. This could be brought forward if required, and as such the location should be included in the monitor and manage strategy.

J23: M20 Junction 9

- 10.4.23 M20 Junction 9 is shown to be over capacity in all future scenarios, including the Do-Minimum scenarios.
- 10.4.24 To mitigate the potential impacts, it is proposed that the exiting flare on Trinity Road is extended by 30m. This would increase the capacity of the approach and provide additional stacking space. It is also proposed that amendments to the lane allocations on the approach are made to allow the middle lane on Trinity Road to be shared for ahead and left movements. This would distribute the capacity enhancements more evenly across all movements on the approach. Additionally, an additional lane

on the southbound exit would assist in catering for the additional traffic. Modelling results for these mitigation proposals for the AM and PM Peak periods, respectively, are shown in Table 96 and Table 97 below.

Table 96 M20 Junction 9 AM Peak

	2044 8.	5k DS No Mit	igation	2044 8.5k DS With Mitigation			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
A251 Trinity Road	98.7%	78.8	13.4	74.3%	18.4	3.1	
M20 Slip Road Westbound	99.6%	49.3	16	86.3%	28	9.1	
Fougeres Way	92.0%	32.7	7.9	91.2%	22.2	10	
M20 Sliproad Eastbound	103.4%	115	31.4	92.4%	44.3	9.1	

Table 97 M20 Junction 9 PM Peak

	2044 8.5k DS No Mitigation			2044 8.5k DS With Mitigation			
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	
A251 Trinity Road	126.2%	132.6	430.3	101.0%	37	82.4	
M20 Slip Road Westbound	102.1%	16.6	58.1	96.5%	12.9	39.3	
Fougeres Way	76.9%	11.8	17.3	85.2%	14.3	19.6	
M20 Sliproad Eastbound	122.2%	113.2	290.1	88.5%	13.8	30	

10.4.25 Discussions with National Highways on a suitable level of mitigation and trigger points at this junction are ongoing.

J24: B2064 Cheriton High Street / B2063 Risborough Lane

- 10.4.26 This junction is expected to be significantly over capacity in the Do-Minimum scenarios, without any development at Otterpool Park. Given the constrained urban environment there is a limit to what physical mitigation would be possible at this location.
- 10.4.27 Discussions with FDHC and KCC have resulted in an understanding that a contribution to active travel measures in the area would be suitable in-lieu of proposing highway mitigation works. Arcadis understand that active travel measures are already being reviewed in this area and in the area of Junction 25.

J25: B2064 Cheriton Road / A2034 Cherry Garden Avenue

- 10.4.28 This junction is expected to be significantly over capacity in the Do-Minimum scenarios, without any development at Otterpool Park. Given the constrained urban environment there is a limit to what physical mitigation would be possible at this location.
- 10.4.29 Discussions with FDHC and KCC have resulted in an understanding that a contribution to active travel measures in the area would be suitable in-lieu of proposing highway mitigation works. Arcadis understand that active travel measures are already being reviewed in this area and in the area of Junction 24.

J26: A259 Prospect Road / Stade Street

- 10.4.30 This giveway junction is shown to be overcapacity on the Stade Street giveway in all future scenarios, starting in the 2037 Do-Minimum scenario. It is considered likely, however, given that the junction modelling software takes no account of the proximity of the pedestrian crossing to the east of this junction, that the capacity issue at this location is overstated.
- 10.4.31 The signalised pedestrian crossing point will cause gaps in the traffic along A259 Prospect Road in both directions, allowing vehicles opportunities to exit from Stade Street. Given this, it is recommended

that the situation at this junction is monitored and managed in order to understand what the true future impact of Otterpool Park at this location would be.

J27: Barrow Hill Shuttle Signals

- 10.4.32 The Barrow Hill Shuttle Signals form a key constraint on the A20 to the west of Otterpool Park, with the shuttle signals going overcapacity in all future scenarios including the 2037 Do-Minimum. Given the physical constraints present, there is not a practical way to significantly increase capacity through this location.
- 10.4.33 Extensive discussions have been undertaken with the Highway Authority, and while it is possible to improve capacity through this location by increasing the cycle times of the signals, this would have the undesirable impact of increasing queue lengths on the A20. Given the desire to encourage traffic to, where possible, access Otterpool Park via M20 Junction 11, any increase in capacity through this location may have the impact of encouraging drivers to take this undesirable route.
- 10.4.34 Cognisant of the above, at this time no changes to the operation of this junction are proposed, however a monitor and manage approach is proposed in order to keep the situation at this location under review.

Junctions SH16/SH18/SH19

- 10.4.35 These three junctions, taken together, form the A260 interchange with the A20. All three junctions as presently configured, are predicted to be overcapacity in all future scenarios, beginning with the 2037 Do-Minimum.
- 10.4.36 Arcadis understand that discussions have taken place between FDHC and HE regarding the future layout of this junction given the Local Plan ambitions. Discussions are ongoing regarding the level of mitigation required as well as an appropriate funding mechanism. It is considered that the likely level of impact from Otterpool Park is minimal given the trip reduction benefits derived from locating all of the required housing growth in one location, therefore an ongoing understanding of the performance of these junctions under the umbrella of the monitor and manage approach is considered most appropriate.

J42: M20 Junction 10A

- 10.4.37 M20 Junction 10A is a new junction directly to the east of M20 Junction 10 which is a full access junction from the M20 providing additional capacity at this location. Junctions 10 and 10a operate together with it being likely that traffic delay would balance across the two junctions.
- 10.4.38 Junction 10a appears to be overcapacity in all future scenarios, in the PM peak period. Providing a third lane northbound on the circulatory carriageway appears to ameliorate the capacity issues, and there is currently hatched out space on the bridge which would allow for a third lane on the northbound carriageway. Results for this proposal for the AM and PM Peak periods, respectively, are shown in Table 98 and Table 99 below:

Table 98 M20 Junction 10A AM Peak

	2044 8	.5k DS No Mit	igation	2044 8.5k DS With Mitigation				
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)		
M20 Eastbound Off-Slip	74.8%	5.8	32.9	81.6%	9.7	43.5		
Hythe Road Eastbound	57.4%	2.7	6.4	55.2%	3.4	6.1		
Hythe Road Westbound	83.0%	2.4	7.3	83.0%	5.7	7.4		
M20 Westbound Off-Slip	86.1%	11.5	28.6	82.4%	9.4	23.8		
A2070 Bad Munstereifel Road	84.1%	11.5	6.2	65.8%	1	2		

Table 99 M20 Junction 10A PM Peak

	2044 8.	.5k DS No Mit	igation	2044 8.5k DS With Mitigation				
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)		
M20 Eastbound Off-Slip	130.5%	103.6	473.1	92.1%	14.1	60.3		
Hythe Road Eastbound	42.8%	1.6	8.4	51.5%	1.9	9.4		
Hythe Road Westbound	66.6%	1	4	80.3%	8.2	9.5		
M20 Westbound Off-Slip	71.8%	6.8	24.2	82.3%	8.3	25		
A2070 Bad Munstereifel Road	100.9%	111.4	48.7	83.2%	2.4	3.9		

10.4.39 However, given that M20 Junction 10a has been recently opened, there is significant uncertainty about what the future performance and capacity of this junction and M20 Junction 10 would be like. While there is the potential to mitigate this junction to bring the junction within capacity, how this would impact M20 Junction 10 operation and whether it would relieve the potential capacity issues here requires discussion with National Highways regarding an appropriate way forward.

J43: A20 Ashford Road Small Roundabout

- 10.4.40 The A20 Ashford Road small roundabout is dominated by the northern and southern arms, with the other two access being minor, infrequently used access points. The main function of the roundabout is to provide a U-turn facility for vehicles travelling westwards along the A20 Ashford Road Left-In Left-Out. The modelling reports that in the 2044 Do-Something scenarios this junction would operate above capacity in the AM peak period. Discussions with TRL have confirmed, however, that in order to accurately model this junction a site-specific adjustment to the modelling values would be required, as due to the nature of the junction with dominant through movements it is likely that the roundabout entries have a higher capacity than the modelling would typically predict.
- 10.4.41 This site-specific data is not available, however, it is considered appropriate that the junction be included in the monitor and manage approach to determine whether the junction is likely to reach capacity in the future, and consider appropriate mitigation measures at that time.

10.5 Mitigation Summary

- 10.5.1 As discussed above, the following junctions have been identified through the modelling as being of concern in the 2044 Do-Something scenarios:
 - Junction 1 M20 Junction 10
 - Junction 2 M20 Junction 11
 - Junction 7B A20 Hythe Road / The Street
 - Junction 11 A20 Ashford Road / Stone Street / Hythe Road
 - Junction 12 Aldington Road / Lympne Hill
 - Junction 14 A261 London Road / Barrack Hill
 - Junction 15 A261 / Dymchurch Road / / Military Road Gyratory
 - Junction 17 A20 Ashford Road / A20 Junction 11 LILO
 - Junction J21a M20 Junction 13 (Castle Hill Interchange)
 - Junction 23 M20 Junction 9
 - Junction 24 B2064 Cheriton High Street / B2063 Risborough Lane
 - Junction 25 B2064 Cheriton Road / A2034 Cherry Garden Avenue
 - Junction 26 A259 Prospect Road / Stade Street
 - Junction 27 Barrow Hill Shuttle Signals

Otterpool Park

Transport Assessment

- Junctions SH16/SH18/SH19
- Junction 42 M20 Junction 10a
- Junction 43 A20 Ashford Road Small Roundabout
- 10.5.2 Detailed discussions have taken place with KCC in order to understand where mitigation might be appropriate and a full monitor and manage programme is to be developed. While some specific junction mitigation measures have been discussed for local junctions, it has been agreed that mitigation at local junctions should be considered under the umbrella of the monitor and manage approach as it is more suitable than providing additional capacity where it may not be appropriate.
- 10.5.3 A summary of the highway mitigation is presented in Table 100.

Table 100 Summary of Highway Mitigation

Location	Mitigation							
A20 between M20 Junction 11 and its junction with Stone Street and A261 Hythe Road	Enhancement of the /upgrade of existing single lane carriageway, including two signalised junctions with pedestrian crossing facilities.							
A20 Junction with Stone Street and A261 Hythe Road (Newingreen Junction)	New Signalised junction							
M20 Junction 11 roundabout	Partial signalisation							
A259 / Dymchurch Road / Military Road	Double yellow lines on Military Road							
M20 Junction 9	Lane amendments and additional lane on southbound exit							
A20 Hythe Road / The Street junction								
M20 Junction 13								
Aldington Road / Lympne Hill junction								
A261 London Road / Barrack Hill junction								
A20 Ashford Road Left-In Left-Out junction								
A259 Prospect Road / Stade Street								
Barrow Hill Shuttle Signals	Monitor and Manage Approach to consider the need for mitigation							
A20 / Spitfire Way / Alkham Valley Road Interchange	mugation							
M20 J10A								
A20 Ashford Road small roundabout junction								
A260 Interchange with the A20 (Junctions SH16/SH18/SH19)								
M20 J10								

10.5.4 Further discussions are required to understand and agree National Highway requirements for mitigation and delivery of their junctions, in particular around the M20 Junction 10 and 10a combined interchange.

10.6 Sensitivity Test (Quantum for Approval)

- 10.6.1 As mentioned in section 1.3.9, there is a necessity to undertake the transport assessment using the Illustrative Masterplan and Illustrative Accommodation Schedule to identify appropriate origins and destinations of trips. The quantum of development set out in the Illustrative Accommodation Schedule, however, has a lower quantum for which approval is requested (set out in the Development Specification). This sensitivity test has been undertaken to derive the equivalent number of vehicle trips generated by the quantum set out in the Development Specification. The Illustrative Accommodation Schedule which reflects the Development Specification quantum is found in Appendix U.
- 10.6.2 Furthermore, the sensitivity test accounts for the inclusion of an additional link road in the proposed town centre. This connects the high street by Westenhanger rail station to the road through the business park. The strategic transport model used for the main assessment did not include for this route to be connected for through traffic as it was not proposed at the time.
- 10.6.3 For this Quantum for Approval sensitivity test, the vehicle trips generated by the Development Specification quantum, on a pro-rata basis for each land use based on the Illustrative masterplan, has been determined. The strategic traffic model has then been run using these inputs to derive the resulting traffic generated at each junction assessed for the main assessment.
- 10.6.4 The resulting peak hour vehicle trips for the 2044 (8,500 homes) sensitivity test at each junction have been compared to the 2044 (8,500 homes) main assessment. The resulting vehicle changes and corresponding percentage changes can be found in Table 101. The highest percentage increase in Passenger Car Unit (PCU) occurs in the AM peak hour at J33 (Otterpool Avenue (west) junction with A20) and J39 Otterpool Avenue junction with the High Street at 16% and 15% respectively. Aside from J34 A20 Ashford Road junction with the new High Street south of Otterpool Avenue with a percentage increase of 7%, all other junctions have a 4% percentage increase or less.

		AM			PM				
n Number Junction Description		Sensitivity Test				•		% Differen	
1 M20 J10	5488		-7		6116	6119		(
2 M20 J11	5455	5602	147	3%	5413	5510			
3 Ashford Road (A20) / Swan Lane	1473	1469	-4	0%	1547	1531	-16	-	
4 Ashford Road (A20) / Stone Hill	1420	1406	-14	-1%	1476	1459	-17	-	
5 Ashford Road (A20) / Station Road / Church Road	1850	1833	-17	-1%	1938	1919	-19	-	
6 Hythe Road (A20) / Meersham	2234	2213	-21	-1%	2190	2168	-22		
7A A2070 Kenniton Road / The Street	2468	2470	2	0%	2509	2511	. 2		
7B Hythe Road (A20) / The Street	2020	1991	-29	-1%	1928	1939	11		
8 and 31 A20 Ashford Road / B2067 Otterpool Lane/Barrow Hill / Access to zone P1B	1740	1733	-7	0%	1905	1891	-14		
9 B2067 Otterpool Lane / Aldington Road	793	759	-34	-4%	772	764	-8		
10 Aldington Road / Stone Street	1107	1112	5	0%	1054	1056	2		
11 A20 Ashford Road / A261 Hythe Road / Stone Street	2951	2878	-73	-2%	2939	2937	-2		
12 Aldington Road / Lympne Hill	1017	1035	18	2%	984	997	13		
13 A261 Hythe Road / Aldington Road	1926	1940	14	1%	2081	2076	-5		
14 A261 London Road / Barrack Hill	2285	2299	14	1%	2305	2301	-4		
15 A259 / Dymchurch Road / Military Road	3608	3624	16	0%	3894	3897	3		
16 A259 Prospect Road / A259 Seabrook Road / Station Road / High Street	2102	2114	12	1%	2216	2215	-1		
17 A20 Ashford Road / A20 J11 offslip	2706	2799	93	3%	2513	2530	17		
18 Ashford Road (A20) / Sandling Road	968	971	3	0%	811	827	16		
19 M20 J11A	1500	1500	0	0%	1391	1397	6		
20 M20 J12	3937	3966	29	1%	4006	4026	20		
21A M20 J13	4690	4721	31	1%	4935	4941	. 6		
21B M20 J14	1927	1924	-3	0%	2170	2171	. 1		
23 M20 J9	8022	8036	14	0%	8202	8206	4		
24 B2064 Cheriton High Street / B2063 Risborough Lane	3004	3024	20	1%	3350	3374	. 24		
25 B2064 Cheriton High Street / A2034 Cherry Garden Avenue	1957	1967	10		2193	2194	. 1		
26 A259 Prospect Road / Stade Street	3120	3138	18	1%	3147	3162	15		
27 Barrow Hill 1-way	1379	1376	-3	0%	1447	1431	-16		
SH18 A260 Spitfire Way / White Horse Hill / A20 Slip Roads	3224	3232	8	0%	3496	3508	12		
SH19 Alkham Valley Road / A20 slip roads	2341	2349	8		1851	1844	-7		
SH16 A260 Canterbury Road / Alkham Valley Road	2917	2924	7		2972	2968	-4		
32 A20 Ashford Rd / Access to zone P6	1119		18		1104	1097			
33 A20 Ashford Rd / Access to by-pass	1258	1458	200	16%	1537	1532	-5		
34 A20 Ashford Rd / Access to zones P1A & P2A	973		71		1268	1284			
35 A20 Ashford Rd / Access to zone P1C	3755		-369	-10%	3788	3550			
36 A20 Ashford Rd / Access to zone P2C (Business Park)	4266				4311	4368			
38 Otterpool Lane / Access to zone P1B & P2B	1019		-9		1083	1083			
39 Newingreen Link Road / High Street	1017		150		1178	1058	-	-	
42 M20 J10a	5634		17		5899	5884			
43 A20 Small Roundabout	4360				4223	4331			

Table 101 Sensitivity Test Compared to 2044 8.5k homes scenario – Vehicle and Percentage Change

- 10.6.5 Based on the overall changes in vehicles and corresponding percentage change in traffic at each of the junctions assessed, it has been determined that there are no material changes to the conclusions of the 2044 8.5k homes scenario when taking into account the values from the sensitivity test.
- 10.6.6 The area of influence, due to the additional link road, where traffic would be impacted the most in terms of traffic movement for the surrounding highway network is considered to be the following junctions:
 - J11 A20 Ashford Road / Stone Street / Hythe Road (Newingreen Junction)
 - J33: A20 Ashford Road Link Road west (Otterpool Avenue west)
 - J34: A20 Ashford Road access to P1A & P2A
 - J35: A20 Ashford Road Link Road east (Otterpool Avenue east)
 - J36: A20 Ashford Road Link Road / High Street (access road to business park)
 - J39: Internal Link Road / High Street junction
- 10.6.7 These junctions are located closest to the new link road. The capacity assessment for each of these junctions were re-run with the sensitivity test vehicular flows to provide a comprehensive assessment on this area of influence. The result of this analysis is reported from Table 102 to Table 107.

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)			
2044 8.5K DS									
A20 Ashford Road Southbound	85.2%	6.1	37.8	86.8%	11.7	40.6			
A20 Ashford Road Eastbound	70.9%	4.1	36.8	88.1%	7.3	65.9			
Stone Street	88.3%	8.8	48	49.3%	2.5	40.8			
A261 Hythe Road	89.5%	12	38.1	86.4%	11.2	37.8			

Table 102 - J11 - Newingreen Junction Sensitivity Test Modelling Results

		AM Peak		PM Peak						
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs) Av. Delay /PCU		Degree of Saturation	Mean Max Queue (PCUs)	Av. Delay /PCU				
	2044 8.5K DS									
A20 Ashford Road Westbound	81.1%	11.1	47.8	76.3%	12.3	28.8				
A20 Ashford Road Eastbound	79.5%	19.7	33.8	69.1%	12.5	36.7				
Access to Zone P1C	64.2%	7.7	47.5	63.5%	7.5	44.9				

Table 103 - J33 - A20 Ashford Link Road West Sensitivity Test Modelling Results

		AM Peak		PM Peak						
Traffic Movement	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)	RFC	Queue Length (vehicles)	Ave. Delay per Vehicle (secs)				
2044 8.5K DS										
High Street	0.63	1.7	23.15	0.5	1	13				
A20 Ashford Road Eastbound	0.27	0.4	8.87	0.08	0.1	8.29				

Table 104 - J34 - A20 Ashford Road access to P1A & P2A Sensitivity Test Modelling Results

		AM Peak		PM Peak						
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)				
2044 8.5K DS										
A20 Ashford Road North	77.2%	14.3	33.5	78.8%	16.6	20.1				
A20 Ashford Road South	76.2%	21	36.3	64.0%	10.6	35.1				
Access to Zone P1C	64.9%	14.5	32.6	74.0%	16.1	23.8				

Table 105 - J35 - A20 Ashford Road Link Road East Sensitivity Test Modelling Results

		AM Peak		PM Peak					
Traffic Movement	Degree of Saturation	Mean Max Ave. Dela Queue per PCU (PCUs) (secs)		Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)			
2044 8.5K DS									
A20 Ashford Road Northbound	88.3%	33.4	14.2	88.3%	33.4	14.2			
A20 Ashford Road Southbound	81.0%	21.4	36.4	82.7%	21.8	38			
Access to Zone P2C	55.5%	11.3	31.2	54.5%	11.1	30.3			

Table 106 - J36 - Ashford Road Link Road / High Street Sensitivity Test Modelling Results

		AM Peak		PM Peak						
Traffic Movement	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)	Degree of Saturation	Mean Max Queue (PCUs)	Ave. Delay per PCU (secs)				
2044 8.5K DS										
High Street North	25.1%	3.7	10.5	20.0%	2.9	9.6				
Link Road East	84.0%	21.4	30	71.5%	15.8	23.1				
Link Road West	14.3%	0.6	54.7	54.5%	2.7	68.1				

Table 107 - J39 - Internal Link Road / High Street Sensitivity Test Modelling Results

- 10.6.8 The results indicate that there are no significant changes between the Sensitivity Test and the main 2044 8.5k scenario and does not result in any material change to the current outcomes concluded for the main assessment.
- 10.6.9 Therefore, the sensitivity test concludes that the main assessment is appropriate and robust.

11 Merge, Diverge and Weaving Assessments

11.1 Introduction

- 11.1.1 The DMRB Merge / Diverge traffic calculation has been prepared for key M20 Junctions. The reference document corresponds to the latest edition of DMRB (CD 122 Grade separated junctions). A number of existing geometries have been designed using older design standards, meaning geometric discrepancies can originate from a change in the DMRB itself.
- 11.1.2 Descriptions and illustrations from the DMRB merge and diverge layouts mentioned in the following sections have been provided in Appendix S.
- 11.1.3 This Transport Assessment has been prepared using a different calculation method than the simplified methodology used for the Local Plan submission. Moreover, the Local Plan submission focused on 6,500 homes being developed for Otterpool.

11.2 Study Area

- 11.2.1 The Local Plan Statement of Common Ground (SoCG) June 2021 with Highways England (now NH) identified the following M20 Junctions, shown in Figure 59, to be included as part of impact assessment:
 - M20 Junction 11;
 - M20 Junction 12;
 - M20 Junction 13; and
 - A20 Alkham Valley Slips.

Figure 59 Study Area for Merge, Diverge and Weaving Assessment

- 11.2.2 The study area was agreed based upon the 2037 forecast development trips at each of the M20 junctions that included Otterpool Park development traffic. The M20 Junctions 9, 10 and 10A were excluded from the study area as the local plan growth on the M20 slips at these locations was not sufficient to be considered a significant impact. Consistent with the Local Plan, the same study area for the merge/diverge analysis has been retained.
- 11.2.3 A comparison of the proposed design outcome has been included.

11.3 Vehicle Trips and Assessment Scenarios

- 11.3.1 Chapters 6 and 9 describe how future network flows were derived and then determined through the use of a VISUM model. The model has been applied to develop the following scenarios, with and without Otterpool traffic to compare against the agreed Local Plan mitigation as part of the June 2020 Statement of Common Ground.
 - Do Minimum 2037, 2044
 - Do Something with Otterpool 8500 homes
 - Do Something with Otterpool 10,000 homes sensitivity test
- 11.3.2 Traffic flows contained in the above scenarios were processed in accordance with DMRB guidance for HGV and gradient factors to assess the merge/diverge layouts.

11.4 Merge / Diverge Result Consistency Analysis

- 11.4.1 Table 108 summarises and identifies:
 - In dark green, situations where the existing merge/diverge type is adequate
 - In light green, situations where the Local Plan agree mitigation is sufficient;
 - In grey, situations where the Local Plan proposals are not sufficient.
- 11.4.2 The merge/diverge diagrams for each scenario are provided digitally in Appendix S.

Table 108 Summary of Merge and Diverge Assessment Upgrade Requirements

						Upgr	ade R	equire	ment	
Junction	Scenario	Merge/ Diverge	Current Type	L. Plan	20	37	2044 8.5k		2044	10k
		Diverge	Туре	1 Idii	AM	PM	AM	PM	AM	PM
		EB Diverge	А	D1	А	А	А	С	А	С
	DM	EB Merge	А	D	Α	В	Α	В	Α	В
	DIVI	WB Diverge	А	С	Α	Α	Α	С	Α	С
M20		WB Merge	А	E1	Α	Α	В	Α	В	Α
11		EB Diverge	А	D1	Α	С	Α	С	Α	С
	DS	EB Merge	А	D	В	D	В	D*	В	D*
	סט	WB Diverge	А	С	С	Α	D	С	D	С
		WB Merge	А	E1	В	Α	D	В	D	В
	DM	EB Diverge	B2	-	А	А	А	А	А	Α
Junction 11 M20 Junction 11A M20 Junction	DIVI	WB Merge	С	-	Α	Α	Α	Α	Α	Α
	DO	EB Diverge	B2	-	Α	Α	А	Α	Α	Α
	DS	WB Merge	С	-	А	А	А	А	А	Α
		EB Diverge	С	-	Α	Α	Α	А	Α	Α
	DM	EB Merge	А	В	Α	В	Α	В	Α	В
M20	DM	WB Diverge	А	A2	Α	Α	Α	А	Α	Α
Junction		WB Merge	D	-	Α	Α	А	Α	А	Α
12		EB Diverge	С	-	Α	С	А	С	А	С
	DS	EB Merge	А	В	Α	В	А	B*	А	B*
		WB Diverge	А	A2	Α	А	А	А	А	А

			_	L. Plan	Upgrade Requirement						
Junction	Scenario	Merge/ Diverge	Current Type		2037		2044 8.5k		2044 10k		
			.,,,,,		AM	PM	AM	PM	AM	PM	
		WB Merge	D	-	Α	В	В	Α	В	В	
		EB Diverge	А	B2	Α	А	Α	А	Α	Α	
	DM	EB Merge	А	-	A**	Α	A**	Α	A**	Α	
	DIVI	WB Diverge	A2	-	Α	Α	Α	Α	Α	Α	
M20		WB Merge	А	С	Α	Α	Α	A*	A*	Α	
Junction 13		EB Diverge	А	B2	Α	Α	Α	Α	D	Α	
	DC	EB Merge	А	-	A**	Α	A**	Α	A**	Α	
	DS	WB Diverge	A2	-	Α	Α	Α	Α	Α	Α	
		WB Merge	А	С	А	Α	A*	A*	A*	A*	

Key:

Existing Layouts correspond with those indicated in CD122 Local Plan Layout is sufficient for the forecast scenario Local Plan Layout is not sufficient for the forecast scenario CD 122 section E/1. Modifying existing motorways applied Number of lanes provided exceeds those that are required

- 11.4.3 Based upon the merge/diverge analysis, the Local Plan mitigation proposals at the following locations exceeds the forecasted required layout for the Otterpool DS scenarios:
 - M20 Junction 11
 - Eastbound Diverge would require a Type C lane drop diverge rather than the Type D Ghost Island lane drop proposed within the Local Plan.
 - Westbound Merge would require a Type D lane gain rather than Type E1 Ghost Island lane gain proposed within the Local Plan.
 - M20 Junction 12
 - The westbound diverge existing provision is sufficient to accommodate the forecast layout requirements therefore the proposed Local Plan upgrades may not be required
 - M20 Junction 13
 - The westbound merge existing provision is sufficient to accommodate the forecast layout requirements therefore the proposed Local Plan upgrades may not be required
- 11.4.4 The merge/diverge analysis for the following locations indicates that the proposed mitigation within the Local Plan may not be sufficient:
 - M20 Junction 11
 - Westbound Diverge may require a Type D Ghost Island lane drop rather than the Type C lane drop diverge proposed within the Local Plan. A preliminary layout is shown in drawing 10029956-ARC-XX-XX-DR-HE-0036 (Appendix I).
 - M20 Junction 13
 - The eastbound diverge may require a larger provision of a Type D Ghost Island lane drop in the 2044 AM DS 10k scenario. The merge/diverge indicates that a reduction of 1.6% traffic on the ramp would result in no improvements required.

11.4.5 Table 109 below summarises the merge / diverge upgrade requirements for the Otterpool 8500 homes planning application based on the worst case trip generation assumptions.

Table 109	Summary o	f Merge and Diverge	e Upgrade Requirements fo	or Otterpool PA 8500 homes
-----------	-----------	---------------------	---------------------------	----------------------------

Junction	Merge / Diverge	Current Provision	Local Plan	Otterpool 8500 Dwellings
M20 Junction 11	EB Diverge	Α	D1	С
	EB Merge	А	D	E (D*)
	WB Diverge	А	С	D
	WB Merge	А	E1	D
M20 Junction 12	EB Diverge	С	-	-
	EB Merge	А	В	D(B*)
	WB Diverge	А	A2	-
	WB Merge	D	-	-
M20 Junction 13	EB Diverge	А	B2	-
	EB Merge	А	-	-
	WB Diverge	A2	-	-
	WB Merge	А	С	B(A*)

^{*}CD 122 section E/1. Modifying existing motorways applied

- 11.4.6 With the implementation of the Otterpool site Transport Strategy combined with the estimated User Centric Survey development trips as reasonable mode split target, it is expected that the estimated traffic generated by the site proposed in the Transport Assessment will not be reached, and hence the improvement options may not be required. The need for these improvements will be assessed through the Monitor and Manage Approach.
- 11.4.7 This proposition is supported, in the future, by the predicted impact of the Lower Thames Crossing scheme, which demonstrates a reduction in flows along the M20 due to the scheme.

11.5 M20 J12 /13 Weaving Assessment

- 11.5.1 The weaving segment between M20 Junction 12 and Junction 13 is characterised by:
 - A Motorway Standard;
 - Two lanes in each direction;
 - A 70mph speed limit;
 - A weaving distance of:
 - 430m eastbound; and
 - 670m westbound.
- 11.5.2 According to DMRB CD122 Revision 1:
 - This section of the M20 is classified as a "Rural road" because the speed limit is 70mph. To be classified as an urban road, the motorway would have to have a speed limit of 60mph or less;
 - The minimum length of a weaving section "shall be 2km for motorways; and 1km for all-purpose roads"; and
 - If the minimum weaving distance is not possible, a link road should be introduced. A link road is a
 parallel road enabling traffic to bypass the weaving segment.
- 11.5.3 Such a technical solution is neither technical practical at this location, nor affordable in the context of the Otterpool Planning Application or the Local Plan.
- 11.5.4 The M20 at the location of the weaving segment is a 70mph road segment. However, the weaving segment is not to standard and therefore a DMRB calculation cannot be performed. If the speed limit

⁻ Existing provision no improvement required

at the weaving section is 60mph, the road can be classified as 'URBA' and the weaving requirement can be much shorter. Thus, the weaving analysis has been undertaken using an Urban road classification.

11.5.5 Weaving segment analysis for the 2044 DS 8.5k and 10k scenarios is presented below in Tables 165 and 166.

Figure 4.7N5 Flow terms used in weaving

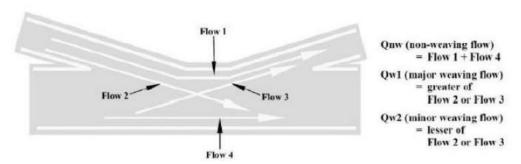


Figure 60 DMRB Weaving Flow Terms

Table 110 2044 DS 8.5k Scenario Number of Lanes Calculation - URBAN

Direction	Period	In vehicles	per hour	N	N (Number of		
		Flow 1	Flow 2	Flow 3	Flow 4		Lanes)
Eastbound	AM	233	393	1086	1350	1.869	2
Eastbound	PM	225	509	1153	1793	2.262	2
Westbound	AM	150	910	603	1870	2.098	2
Westbound	PM	205	1078	502	1463	1.859	2

Table 111 2044 DS 10k Scenario Number of Lanes Calculation - URBAN

Direction	Period	In vehicles	per hour	N	N (Number of		
Direction	I errou	Flow 1	Flow 2	Flow 3	Flow 4	IV.	Lanes)
Eastbound	AM	230	384	1095	1370	1.875	2
Eastbound	PM	240	484	1132	1799	2.237	2
Westbound	AM	147	905	594	1856	2.079	2
Westbound	PM	200	1089	491	1475	1.862	2

11.5.6 The results of the weaving analysis indicate that two lanes on the mainline are sufficient along the M20 for 2044 scenarios.

12 User Centric Approach

12.1 Introduction

- 12.1.1 The future of travel and the movement of goods is changing. Advances to technology, changes to the way we work and a shift in the way we access services and buy goods are influencing the way we travel. The Otterpool Park development will be able to influence and encourage site users to live and travel in a more sustainable way through the transport options and facilities provided. Additionally, the offer at the development will reduce the need to travel longer distances for certain purposes.
- 12.1.2 The Transport Assessment has used the traditional 'predict and provide' methodology to estimate a worst-case scenario for vehicle trips generated by the development, as detailed above. However, the Transport Strategy vision is that the actual car trips generated by the development would not reach the levels estimated in the Transport Assessment. This means that the mitigation schemes identified in the highway access strategy could be reduced or would no longer be necessary as the threshold of requirements are not met.
- 12.1.3 This Chapter sets out the alternative trip generation scenarios that take into account the transport strategies and proposed sustainable infrastructure to be implemented as part of the development.

12.2 User Centric Scenarios

- 12.2.1 A User Centric Approach that focuses on the mobility needs of users first has been used to estimate an alternative trip generation for the development. This method takes into account the propensity of users to take up more active and sustainable travel options compared to the private car should there be a reasonable alternative. This has been determined by carrying out an online survey of 2,600 respondents in London and Kent who meet the demographic characteristics of future residents of Otterpool Park and asking questions relating to their travel behaviours. The consideration for travel behaviours prior to the Covid-19 pandemic, but also recognising the 'new normal' of travel behaviour in the future, was made clear to the respondents for each question.
- 12.2.2 The user-centric approach and process is summarised in Figure 61 and the details are set out in the User-Centric Travel (WSP) document, also submitted for information with the Planning Application (OP12). The surveys undertaken (also set out in the User Centric Travel document) have resulted in the identification of opportunities that key future mobility changes would bring, these are summarised in Table 112.

Table 112 Opportunities that Key Future Mobility changes would bring

Key Change	Survey Result	Opportunities
Changing Attitudes	Respondents expect to travel less post Covid 19 than before the Pandemic.	People will be more open to new ways of accessing activities and services.
Cleaner Transport	Over 50% of trips are made using active travel and public transport modes, whilst average car ownership is 70%.	Encourage mode shift and offer alternative options to the private car.
New Modes	Household bicycle ownership is seen to be low on average (50% of respondents.)	Implementation of e-scooter and e-bike schemes for last mile trips.
Data and Connectivity	Shopping and personal business trips are the most likely trip purpose to be replaced with a digital alternative.	Digital connectivity and the resulting movement of data is the golden thread linking all elements of Future Mobility. This includes the real time alerts of journey disruption provided by smart mobility apps, which can inform users on how

Key Change	Survey Result	Opportunities
		best to travel, and whether it is necessary to travel at all.
Automation	More than 50% survey respondents expect no change in their delivery behaviour post Covid 19	Opportunity to implement improved sensing technology, computing power and software engineering to provide more seamless freight and delivery options.
New Business Models	Those living in houses are more than 1.5 times as likely to have at least one car in their household than those living in a flat	Providing new mobility business models, such as on demand transit options, which offer the same level of convenience as a private car but don't have the same high fixed costs.

12.2.3 Two scenarios have been derived based on the results of the survey data:

- Best Case Scenario: This scenario takes the user survey results a step further by applying a more ambitious mode share target than the User Survey scenario. The comprehensive range of transport measures proposed at the development would be required to support the ambitious mode share target. This target is intended for the north east area of the development, where accessibility levels are expected to be highest with Westenhanger rail station being within this plot, however, it could also be used as an aspiration for the wider site. The mode share for this scenario has originated from WSP's "Otterpool Park Phase 1 Access and Movement Strategy" with some minor amendments.
- User Survey Scenario: Directly based on the likely travel behaviour of future Otterpool Park users based on survey responses and are only applied to the external trip Mode Share, the internal trips reflect those in the best-case scenario.
- 12.2.4 The derivation of the mode share for these two scenarios are summarised in Figure 62, the elements where adjustments were made were to the passenger mode split for both the best case and user survey data. As none was accounted for in these two scenarios, the proportion of passenger mode split used in the TA worst case was applied, these were reallocated from various other modes dependent on the scenario, as shown in Figure 62.
- 12.2.5 The resulting mode share for the Best Case and User Survey scenario for the year 2044 (8.5k homes) are shown in Table 113 and Table 114. The subsequent trips generated by mode for each of the two scenarios are illustrated in Table 115 and Table 116.
- 12.2.6 **Table 117** Table 117 summarises the differences between the driver trips for each of the scenarios. The reduction in driver trips for the user survey and best-case scenario can be up to 35% and 47% in the PM peak hour compared to the TA worst case. This demonstrates that there may not be a need for some of the highway mitigation measures proposed as part of the TA as the thresholds for their requirement may not be reached. This will be assessed through the monitor and manage approach.

Figure 61 User Centric Approach

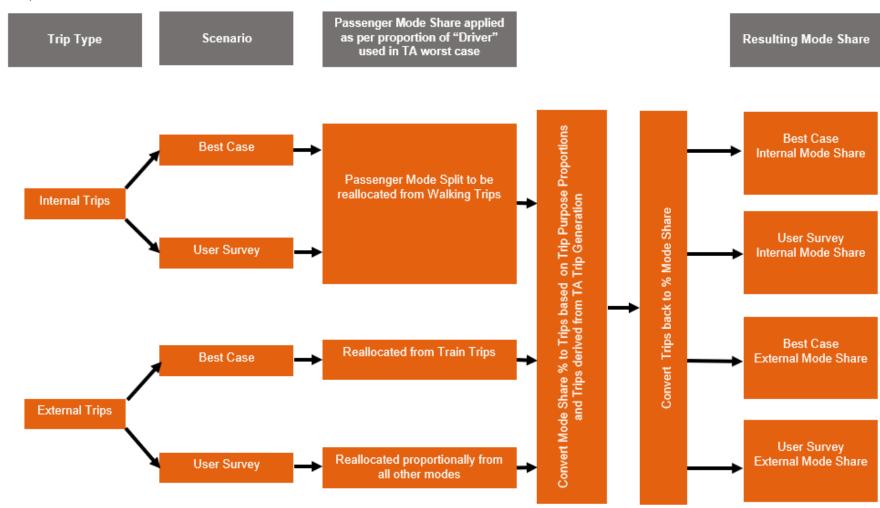


Figure 62 Derivation of Best Case and User Survey Mode Share Flow Diagram

Table 113 Internal, External and Combined AM and PM Peak Mode Splits (2044) – Best Case Scenario

		Mode Split												
Period	Intern	al Trip	Extern	al Trips	Combined									
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak								
Driver	8%	15%	21%	25%	16%	22%								
Passenger	3%	7%	5%	8%	4%	8%								
Taxi	2%	5%	0%	0%	1%	2%								
Motorcycle	0%	0%	0%	0%	0%	0%								
Train	0%	0%	41%	40%	26%	26%								
Bus	5%	5%	16%	13%	12%	10%								
Light Rail	0%	0%	0%	0%	0%	0%								
Bicycle	7%	11%	7%	7%	7%	8%								
Walk	75%	58%	10%	7%	34%	24%								
Total	100%	100%	100%	100%	100%	100%								

Table 114 Internal, External and Combined AM and PM Peak Mode Splits (2044) – User Survey Scenario

			Mode	Split			
Period	Intern	al Trip	Extern	al Trips	Combined		
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	
Driver	8%	15%	31%	36%	23%	29%	
Passenger	3%	7%	6%	11%	5%	10%	
Taxi	2%	5%	1%	1%	1%	2%	
Motorcycle	0%	0%	1%	1%	1%	1%	
Train	0%	0%	28%	24%	18%	16%	
Bus	5%	5%	14%	11%	11%	9%	
Light Rail	0%	0%	0%	0%	0%	0%	
Bicycle	7%	11%	3%	3%	5%	6%	
Walk	75%	58%	15%	12%	37%	28%	
Total	100%	100%	100%	100%	100%	100%	

Otterpool Park Transport Assessment Table 115 Internal, External and Combined Trips by Mode (2044) – Best Case Scenario

			Interna	l Trips					Externa	al Trips			Combined					
Period	AM	Peak H	our	PN	l Peak H	our	our AM Peak Hour			PM Peak Hour			AM Peak Hour			PM Peak Hour		
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D
Driver	208	48	256	123	236	359	561	587	1,148	601	597	1,198	769	635	1,404	724	833	1,558
Passenger	72	24	96	76	103	180	104	147	251	211	176	387	177	171	348	287	280	567
Taxi	42	7	49	40	78	118	0	0	0	0	0	0	42	7	49	40	78	118
Motorcycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Train	0	0	0	0	0	0	1,154	1,031	2,185	875	1,024	1,899	1,154	1,031	2,185	875	1,024	1,899
Bus	123	35	158	43	81	124	442	428	870	293	326	619	565	463	1,028	336	407	743
Light Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bicycle	194	41	235	83	188	271	181	192	373	158	157	315	375	233	608	241	345	586
Walk	1,824	536	2,360	491	932	1,423	266	286	552	163	163	326	2,090	822	2,912	655	1,095	1,750
Total	2,463	691	3,154	857	1,618	2,475	2,709	2,670	5,380	2,301	2,444	4,746	5,172	3,361	8,533	3,158	4,063	7,221

Otterpool Park Transport Assessment Table 116 Internal, External and Combined Trips by Mode (2044) – User Survey Scenario

			Interna	l Trips					Externa	al Trips			Combined					
Period	AM	l Peak H	our	PN	PM Peak Hour		AN	AM Peak Hour		PM Peak Hour		AM Peak Hour			PM Peak Hour			
	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D	Arr	Dep	A + D
Driver	208	48	256	123	236	359	841	851	1,692	849	868	1,718	1,049	899	1,948	973	1,104	2,077
Passenger	72	24	96	76	103	180	146	200	346	281	238	519	218	224	443	357	341	699
Taxi	42	7	49	40	78	118	25	25	50	23	24	47	68	32	99	63	102	165
Motorcycle	0	0	0	0	0	0	25	25	50	23	24	47	25	25	50	23	24	47
Train	0	0	0	0	0	0	806	719	1,525	519	629	1,148	806	719	1,525	519	629	1,148
Bus	123	35	158	43	81	124	379	364	743	257	287	544	502	398	901	299	368	668
Light Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bicycle	194	41	235	83	188	271	90	89	179	63	69	132	284	130	414	146	257	403
Walk	1,824	536	2,360	491	932	1,423	397	397	793	286	305	591	2,220	933	3,153	777	1,237	2,014
Total	2,463	691	3,154	857	1,618	2,475	2,709	2,670	5,380	2,301	2,444	4,746	5,172	3,361	8,533	3,158	4,063	7,221

Table 117 2 Way Driver Trips Summary by Scenario (2044)

	Scenario											
Period	Worst C	ase (TA)	User S	Survey	Best Case							
	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak						
Driver Mode Share	46%	51%	23%	29%	16%	22%						
Driver Trips	3,923	3,649	1,948	2,077	1,404	1,558						
Trip Difference compared to Worst Case (TA)	-	-	-1,975	-1,572	-2,519	-2,091						
% Reduction compared to Worst Case (TA)	-	-	50%	43%	64%	57%						

13 Effects on Sustainable Transport Modes

13.1 Introduction

- 13.1.1 This Chapter describes the effects of the development proposals on the sustainable transport networks. The assessment focuses on the 2044 main assessment scenario, which represents full-build out of the Otterpool Park development for which this application is being submitted.
- 13.1.2 The non-car trips assessed in this Chapter refer to the User Centric Approach and reports the estimated values for both the Best Case and the User Survey Scenario.
- 13.1.3 The trip distribution of non-car modes have been described in Chapter 9.3. Applying these principles, the resulting summary of origins and destination proportions for the best case and user survey scenarios are presented in **Table 118**. Appendix T contains the non-work trip gravity model and commuter trip distributions for trips made by non-Car modes utilised in this assessment.

Table 118 Origin/Destination Proportions of Non-Car Mode (2044 8.5k)

Origin/		Best Cas	e Scenario		User Survey Scenario							
Destination	Bus	Rail	Cycle	Walk	Bus	Rail	Cycle	Walk				
Lympne	0%	0%	14%	11%	0%	0%	11%	11%				
Stanford	2%	0%	5%	1%	2%	0%	4%	1%				
Sellindge	0%	0%	18%	82%	0%	0%	15%	77%				
Lyminge	0%	0%	1%	0%	0%	0%	1%	0%				
Hythe	14%	1%	13%	5%	14%	1%	13%	9%				
Palmarsh (west)	3%	0%	2%	0%	3%	0%	2%	0%				
Folkestone	34%	15%	24%	0%	35%	16%	29%	0%				
East and north of Otterpool	1%	0%	4%	1%	1%	0%	4%	1%				
Old Hawkinge	2%	0%	1%	0%	2%	0%	1%	0%				
Dymchurch	1%	0%	1%	0%	1%	0%	1%	0%				
Burmarsh	0%	0%	1%	0%	0%	0%	1%	0%				
North of Hawkinge	0%	0%	0%	0%	0%	0%	0%	0%				
North East Folkestone & Hythe	0%	0%	0%	0%	0%	0%	0%	0%				
Central Folkestone & Hythe	1%	0%	1%	0%	1%	0%	1%	0%				
North Folkestone & Hythe	0%	0%	0%	0%	0%	0%	0%	0%				
New Romney	2%	0%	4%	0%	2%	0%	5%	0%				
South East Folkestone & Hythe	0%	0%	0%	0%	0%	0%	0%	0%				
Lydd	1%	0%	3%	0%	1%	0%	4%	0%				
Ashford	25%	25%	2%	0%	24%	25%	2%	0%				
Canterbury	5%	1%	1%	0%	5%	1%	1%	0%				

Origin/		Best Cas	e Scenario			User Survey Scenario				
Destination	Bus	Rail	Cycle	Walk	Bus	Rail	Cycle	Walk		
Dover	4%	16%	1%	0%	5%	16%	2%	0%		
Maidstone	0%	2%	0%	0%	0%	2%	0%	0%		
Rother	0%	0%	0%	0%	0%	0%	0%	0%		
Dartford	0%	0%	0%	0%	0%	0%	0%	0%		
Tonbridge and Malling	0%	1%	0%	0%	0%	1%	0%	0%		
Medway	0%	0%	0%	0%	0%	0%	0%	0%		
Tunbridge Wells	0%	0%	0%	0%	0%	0%	0%	0%		
Swale	0%	0%	0%	0%	0%	0%	0%	0%		
Thanet	1%	4%	0%	0%	1%	4%	1%	0%		
London	0%	25%	0%	0%	0%	25%	0%	0%		
Other UK	0%	5%	1%	0%	0%	5%	1%	0%		
Total	100%	100%	100%	100%	100%	100%	100%	100%		

13.2 Effects on Pedestrian Network

External network

- 13.2.1 Table 115 and Table 116 in Chapter 12 presented the total number of Otterpool Park trips by mode in 2044 (8.5k homes) for the Best Case and User Survey Scenario respectively. Table 119 and
- 13.2.2 Table 120 shows the purposes for which these trips are expected to be made.

Table 119 AM and PM Peak External Walk Trips by Purpose – Best Case Scenario (2044 8.5k)

	Number of Trips								
Link Name	1	AM Peak Hour				PM Peak Hour			
	Arr	Dep	2-Way	Arr	Dep	2-Way			
Commuting	87	68	154	57	76	133			
Education	169	187	356	12	11	23			
Shopping	1	4	5	8	6	14			
Leisure	7	23	31	79	64	144			
Personal Business	2	4	5	7	5	12			
Total	266	286	552	163	163	326			

Table 120 AM and PM Peak External Walk Trips by Purpose – User Survey Scenario (2044 8.5k)

	Number of Trips								
Link Name	Δ.	AM Peak Hour				ur			
	Arr	Dep	2-Way	Arr	Dep	2-Way			
Commuting	217	170	387	143	191	334			
Education	163	181	344	11	11	22			
Shopping	4	10	14	22	17	39			
Leisure	8	27	35	90	73	163			
Personal Business	4	10	14	20	13	32			
Total	397	397	793	286	305	591			

- 13.2.3 The number of AM peak hour external Walk trips is expected to be dominated by trips made for Education purposes, with trips for other purposes relatively low in comparison. Education trips include escort trips, for which each trip generates one arrival and one departure in each peak period.
- 13.2.4 The external Walk trip generation has been based on current travel behaviour patterns and Walk mode shares derived from Census and NTS data, which are influenced by the current conditions on the existing pedestrian network. A cut off for origin/destinations further than the equivalent of a 120-minute walk was applied and the trips redistributed proportionally to the remaining origin/destinations. Since changes to the sustainable transport networks are proposed, together with off-site links and travel behavioural measures, this travel behaviour is expected to change to increase sustainable mode use. Although significant changes are proposed to the internal pedestrian network, in the form of enhancements that can be expected to increase the number of internal walk trips, the most significant change to external transport networks in the very local area in which walk trips are expected to be made is proposed for the bus network. The proposed bus service frequency increases are anticipated to make it much easier to make time savings on local,

- short-range journeys by using bus services. Thus, it is anticipated that a number of external trips than would otherwise be made on foot may in future change to Bus mode.
- 13.2.5 The external Walk trips have been consolidated into five links/directions adjacent to the site which represent the local routing pattern of all the walk trips, the equivalent for the Best Case and the User Survey scenario are shown in Table 121 and Table 122.

Table 121 AM and PM Peak External Walk Trips by Local Routing – Best Case Scenario (2044 8.5k)

	Number of Trips								
Route	A	AM Peak Ho	ur	PM Peak Hour					
	Arr	Dep	2-Way	Arr	Dep	2-Way			
Bridge over M20 at Stone Street	1	1	3	1	1	2			
A261 Hythe Road / PRoWs to Hythe	15	11	26	10	15	25			
A20 Stone Street	15	16	32	9	9	18			
B2067 Otterpool Lane	15	16	32	9	9	18			
A20 Barrow Hill	220	240	459	134	129	263			
Total	266	286	552	163	163	326			

Table 122 AM and PM Peak External Walk Trips by Local Routing – User Survey Scenario (2044 8.5k)

	Number of Trips							
Route	A	M Peak Ho	ur	PM Peak Hour				
	Arr	Dep	2-Way	Arr	Dep	2-Way		
Bridge over M20 at Stone Street	3	2	5	2	2	4		
A261 Hythe Road / PRoWs to Hythe	47	33	80	30	47	78		
A20 Stone Street	21	22	43	15	16	31		
B2067 Otterpool Lane	21	22	43	15	16	31		
A20 Barrow Hill	304	318	622	223	224	447		
Total	397	397	793	286	305	591		

- 13.2.6 Table 121 and Table 122 predicts that the majority of external Walk trips are likely to route along Barrow Hill to/from Sellindge, which is a settlement with the largest population within walking distance, with a peak of 622 trips (PM peak for User Survey scenario), equivalent to around ten trips per minute. This route along the A20 currently has footways on both sides of the road, including on the section under the bridge which narrows to one lane of traffic controlled by traffic signals, which acts as a method of traffic calming. Analysis of the accident records along this route suggests there is not currently an issue with accidents, there have been 2 pedestrian accidents along the whole of the A20 corridor over the five-year period analysed until end of 2019, and no accidents involving pedestrians occurred in 2019.
- 13.2.7 This route is not currently identified as a priority for improvement in the Walking and Cycling Strategy commissioned by Folkestone & Hythe District Council, but a number of proposals for the Otterpool Park development described in Section 5.4 will provide benefit to pedestrians using this route. There is also a proposed reduction in speed limit to 30mph along the A20 Ashford Road leading up to Barrow Hill from the site, which ties in with the committed traffic calming scheme through Sellindge Village

- (which includes a speed reduction to 30mph, additional controlled and uncontrolled crossing points and narrowing of the carriageway). The extension of the 30mph speed limit along Barrow Hill can be expected to have a further positive affect in reducing HGV traffic through Sellindge.
- 13.2.8 This route may also benefit from re-surfacing with replacement and extension of the existing anti-skid surfacing on approach to the stop-lines at the signalised section under the bridge, which is showing signs of wear. Re-surfacing would also provide some mitigation to the noise issues which, during consultation, some residents of Barrow Hill suggest is currently generated by vehicles routing along this section of the A20.
- 13.2.9 Table 121 and Table 122 suggests that the routes that would experience the next greatest increase in pedestrian movements are to A20 Stone Street, B2067 Otterpool Lane and also towards Hythe.
- 13.2.10 Trips to Lympne, would be split along Otterpool Lane and Stone Street, and are expected to generate just over one trip every minute along these two routes. Trips south along Lympne Hill, east along Aldington Road and north on the bridge over the M20 at Stone Street, are expected to be very low.
- 13.2.11 As a result of transport measures, the number of pedestrian trips between Otterpool Park and Hythe during peak periods is expected to be low, especially with the proposed improvement to bus services, which will provide a frequent, attractive travel option to this destination.
- 13.2.12 It is estimated that the route to/from Hythe during the peak hours will be around one trip a minute. Chapter 3 shows that there is currently a choice of routes between the site and Hythe:
 - Two PRoW;
 - HE/281: routing through Sandling Park in the Kent Downs AONB from the north-eastern boundary of the site; and
 - o HE/293: extending from the south-east boundary of the site just north of Lympne.
 - The A261 Hythe Road.
- 13.2.13 At present, the A261 Hythe Road has little or no footway provision along its length, which, along with steep gradients, make this a difficult route for pedestrians. The number of accidents recorded on this road in the five-year period analysed is low, none involving pedestrians. The Folkestone & Hythe Walking and Cycling Study identifies this route as a priority route for improvement for pedestrians and cyclists.
- 13.2.14 The two PRoWs provide a safer and more attractive route for people wishing to walk the route for to Hythe. However, as described in Chapter 3, PRoW HE/281 currently crosses the A20 Ashford Road without the provision of a designated crossing point. The width of the road prohibits the provision of central refuges, and the road alignment is such that visibility for drivers is below guidance at some locations. As mentioned in 5.4.17, as part of the upgrade to the A20 between the Otterpool Avenue and the M20 J11, a significant improvement is proposed for pedestrians in the form of two signalised pedestrian crossings, located at the A20/Otterpool Avenue junction and the A20/Business Park access junction. This facilitates the connection to HE/281 to the south. There is the option to divert the existing HE/281where it lies within the site to follow the proposed Stone Street and Otterpool Avenue to reach the A20. There is also a proposed foot path provision on the eastern side of the A20 between the two signalised pedestrian crossings to facilitate the movement to the existing HE/281.

Internal Pedestrian Network

- 13.2.15 Table 115 and Table 116 in Chapter 12 showed that there is expected to be up to just over 2,350 walk trips between internal ODs in the AM peak and just over 1,400 in the PM peak. As with external AM peak hour trips, the predominate source of these walk trips is expected to be Education trips, as around 4,000 school children, some with accompanying escorts, journey to school, with the majority expected to make the journey on foot.
- 13.2.16 The development proposals for pedestrians described in the Otterpool Park Transport Strategy (ES Appendix 16.5) and the principles described in Chapter 5 are expected to offer attractive, frequent modal alternatives for short-distance travel as well as significantly enhancing the environment in which

- pedestrians can travel. The provision of bus services with service frequency of between 4 and 6 buses per hour, which could include a "loop" serving key destinations within the site, is likely to invite a shift to Bus mode from Walk as well as car. The provision of cycle infrastructure may also create a shift from Walk to Cycle mode, especially for Secondary school trips. The mode share for Walk trips may, therefore, reduce from the percentage suggested by current trip patterns.
- 13.2.17 However, the on-site pedestrian infrastructure would be capable of accommodating such high walk trips as are predicted within the trip generation. The planned walking routes would link residential areas to key destinations, providing a mix of routes that are adjacent to the road network and off-road connections where they are more direct.
- 13.2.18 The provision of amenities such as schools, shops, play areas, community facilities and employment hubs would be distributed across the site. This means that, rather than focusing Walk trips on just a few locations that provide all amenities for the site, walk trips would be distributed across the site. The footway provisions within the development are expected to be sufficient to accommodate pedestrian flows at a good level of service.
- 13.2.19 Where pedestrian routes cross the A20 Ashford Road on key desire lines, signal-controlled pedestrian crossings would be provided to facilitate safe passage.

13.3 Effects on Cycle Network

External Cycle Network

- 13.3.1 Table 113 in Chapter 12 showed that the percentage of total external trips expected to be made by Cycle is up to 7% in the PM peak (Best Case scenario). Table 115 showed that this level of cycling equates to around 252 cycle trips in the AM peak and 313 in the PM peak. Although the severe gradient on most of the external network will always be a barrier to cycling from some people, the significant level of cycling infrastructure proposed on the Otterpool Park site is expected to lead to an increase in peak and off-peak Cycle trips compared to the TA trip generation scenario (Table 34).
- 13.3.2 The primary trip purpose for external Cycle trips is expected to be Education trips in the AM peak and Leisure trips in the PM peak. Cycle trips for Shopping are expected to be negligible. Table 115 and Table 116 in Chapter 12 presented the total number of Otterpool Park trips by mode in 2044 (8.5k homes) for the Best Case and User Survey Scenario respectively. Table 123 and Table 124 shows the purposes for which the cycle trips are expected to be made.

Table 123 AM and PM Peak External Cycle Trips by Purpose – Best Case Scenario (2044 8.5k)

	Number of Trips								
Link Name	Α	PM Peak Hour							
	Arr	Dep	2-Way	Arr	Dep	2-Way			
Commuting	14	43	57	38	7	45			
Education	62	46	108	4	6	10			
Shopping	6	5	11	15	23	38			
Leisure	21	15	36	63	95	158			
Personal Business	23	17	40	25	37	62			
Total	126	126	252	145	168	313			

Table 124 AM and PM Peak External Cycle Trips by Purpose – User Survey Scenario (2044 8.5k)

		Number of Trips								
Link Name	А	M Peak Ho	our	PM Peak Hour						
	Arr	Dep	2-Way	Arr	Dep	2-Way				
Commuting	8	25	33	22	4	26				
Education	62	46	108	4	6	10				
Shopping	2	1	3	4	6	10				
Leisure	6	5	11	19	29	47				
Personal Business	6	4	10	6	10	16				
Total	84	81	165	55	54	109				

13.3.3 Table 125 and Table 126 presents the likely local routing of external Cycle trips to/from the origins and destinations reported earlier in Table 118.

Table 125 AM and PM Peak External Cycle Trips by Local Routing – Best Case Scenario (2044 8.5k)

	Number of Trips							
Route	А	M Peak Ho	ur	PM Peak Hour				
	Arr	Dep	2-Way	Arr	Dep	2-Way		
A20 Ashford Road s/o M20 J11	26	29	55	24	23	46		
M20 Westbound	2	2	4	2	2	3		
M20 Eastbound	1	1	2	0	1	1		
B2068 Stone Street	12	13	25	11	10	21		
Sandling Road	12	13	25	11	10	21		
A261 Hythe Rd	3	2	5	2	3	5		
Stone Street or B2067 Otterpool Lane	103	105	208	86	90	176		
B2067 Aldington Road	1	1	2	1	1	1		
Lympne Hill	23	21	44	17	20	37		
A20 Barrow Hill	34	44	77	36	29	64		

Table 126 AM and PM Peak External Cycle Trips by Local Routing – User Survey Scenario (2044 8.5k)

		Nui	nber	of Tı	ips	
Route		M Pe Hour		PM Peak Hour		
	Ar r	D ep	2- W ay	Ar r	D ep	2- W ay
A20 Ashford Road s/o M20 J11	13	13	26	9	10	19
M20 Westbound	1	1	2	1	1	2
M20 Eastbound	1	0	1	0	1	1
B2068 Stone Street	6	6	11	4	4	8
Sandling Road	6	6	11	4	4	8
A261 Hythe Rd	2	1	3	1	2	3
Stone Street or B2067 Otterpool Lane	52	50	10 2	36	41	77
B2067 Aldington Road	0	0	1	0	0	1
Lympne Hill	13	11	23	8	11	19
A20 Barrow Hill	14	18	32	11	9	20

- 13.3.4 The destination of Hythe is expected to attract the greatest number of external Cycle trips, in both the Best Case and User Survey scenarios for both peak periods. As described in Chapter 3, the A261 Hythe Road is currently an unattractive route for cyclists as it is heavily trafficked and is characterised by a winding road alignment with restricted visibility at some locations. The width of carriageway along with the absence of footways and presence of trees and bushes at the side of the road make the provision of cycleways difficult. The PRoW described above in the pedestrian effects section provide routes to Hythe, but the condition of the routes makes them currently unsuitable for practical use by cyclists.
- 13.3.5 The Otterpool Park proposals offer a measure of improvement for cyclists that would make the future use of an enhanced route for cyclists along the HE/343 Old London Road a more attractive option. From the development site, this route would be made via Stone Street or Otterpool Lane in the southbound direction and then eastbound on Aldington Road. This alternative cycle route towards Hythe will be promoted as the main cycle route to Hythe.
- 13.3.6 The Otterpool Park proposals would offer many tangible benefits for cyclists and other road users compared to the current arrangement. The proposed Otterpool Avenue would serve to remove a proportion of HGV traffic from the Newingreen junction. By this measure, it would reduce the overall level of traffic routing through the Newingreen junction and reduce the level of traffic on the western arm of the junction. The junction would be signalised, thus providing the opportunity to provide cycle priority measures where capacity allows.
- 13.3.7 The realignment of the A20 between Newingreen Junction and the M20 junction 11 together with the new signal-controlled junctions at the new Otterpool Avenue and the Business Park access, offer significant safety improvements to all cyclists using this route and can serve to offer encouragement to potential cyclists to switch to cycle mode from other less-sustainable options.
- 13.3.8 An additional of up to 77 Cycle trips in the AM peak (Best Case scenario) are forecast along the A20 at Barrow Hill. While traffic flows along this route are proposed to increase, the implementation of a speed reduction from 40mph to 30mph along the A20 from the current 30mph zone at Sellindge Village to where the A20 meets the A261 would offer significant safety benefits to cyclists.

13.3.9 Additional Cycle trips on other local routes are expected to be lower.

Internal Cycle Network

- 13.3.10 Table 34 suggests that the level of internal Cycle trips is expected to be 7% and 11% in the AM and PM peak respectively, equivalent to 235 and 271 internal cycle trips.
- 13.3.11 The level of cycle infrastructure proposed as part of the development represents a significant upgrade on the current levels across the site and surpasses that provided in other parts of the local area, from which the assessment Cycle mode share is derived. A description of the principles of the proposed cycle infrastructure are in the Transport Strategy Section 5.3 and the Transport Strategy (ES Appendix 16.5).
- 13.3.12 Segregated cycle routes away from traffic would provide safe routes through green spaces. Cycle routes would link in with existing and proposed cycle routes in the external network. Cycle storage facilities in residences and workplaces and cycle parking in public areas would provide the necessary incentives to increase cycle usage and manage impacts.
- 13.3.13 In addition to the 'hard' cycle infrastructure, 'soft measures' to promote cycle usage that would be implemented through Residential, School and Workplace Travel Plans, as set out in the Draft Framework Travel Plan, is expected to have a positive influence on cycle usage for residents and visitors.

13.4 Effects on Bus Network

External Bus Network

- 13.4.1 The trip generation calculations estimate up to around 650 external Bus trips would be created by the site in the 2044 AM peak hour for both the Best Case and User Survey scenario (Table 115 and Table 116). This is based on a more ambitious mode share targets compared to the TA (Table 34) with up to 12% compared to 6% for external AM peak hours Bus trips. Infrequent bus services along with poor bus stop facilities are chiefly responsible for existing low bus usage, for which the TA scenario is based.
- 13.4.2 With the exception of Sellindge and Lympne, both of which are small residential settlements, the existing population within or directly adjacent to the site boundary is very low. The demand for bus services through this small part of the network is therefore low and it has proven difficult for service providers to sustain a good level of service provision. The introduction of the Otterpool Park development at this location will open up opportunities to support enhanced services that would provide significant benefit to existing local communities as well as support a sustainable Transport Strategy for the new town.
- 13.4.3 The increases to service provision and improvements to access to services proposed in the Transport Strategy (ES Appendix 16.5) and in the Draft Framework Travel Plan (ES Appendix 16.6) are expected to have a significant positive effect on bus usage and demand. Initial discussions with local service providers have been positive, and further information regarding development phasing has been provided to them to inform future planning and agreement over service provision requirements and potential financial contributions towards their implementation. Further discussions will be held to investigate options that will provide the necessary routing of services such that they serve bus stops across the site that would be located such that the majority of homes are within 400m of a stop.
- 13.4.4 Table 118 provided a distribution of the predicted proportions of external Bus trips by Origin/Destination. Table 127 and Table 128 presents the estimated distribution of these trips on the current bus services that passengers would be required to use to travel to/from the ODs during the AM and PM peak hours for the Best Case and User Survey scenarios respectively. While it is anticipated that Kent County Council will undertake more detailed analysis of bus service impact, the following two Tables provide an indication of potential impact on each existing service.

Table 127 AM and PM Peak External Bus Trips by Service Number – Best Case scenario (2044 8.5k)

_	Number of Trips									
Route Number		AM Peak Hour		PM Peak Hour						
1141111001	Arr	Dep	2-Way	Arr	Dep	2-Way				
10	391	365	756	289	318	607				
10A	9	4	13	4	8	11				
11	6	3	8	2	5	7				
16	16	26	42	22	14	36				
17	4	6	10	5	4	9				
18A	42	59	100	0	0	0				
73	15	3	18	3	13	16				
102	47	20	67	17	41	59				

Table 128 AM and PM Peak External Bus Trips by Service Number – User Survey scenario (2044 8.5k)

	Number of Trips									
Route Number		AM Peak Hour		PM Peak Hour						
Hamboi	Arr	Dep	2-Way	Arr	Dep	2-Way				
10	318	284	604	253	280	533				
10A	8	4	12	3	7	10				
11	5	2	8	2	5	7				
16	13	21	34	20	12	32				
17	4	5	9	4	3	8				
18A	52	75	126	0	0	0				
73	14	3	17	3	12	15				
102	42	19	61	16	37	53				

13.4.5 The impact on services other than service number 10 is expected to be low based on the agreed method of deriving Bus trip generation. Since service number 10 is the most regular service to route through the site, almost all external Bus trips are expected to need to utilise this route to reach their destination or to connect to other routes. The current level of service frequency of one bus per hour for service number 10 would be insufficient to support this level of demand or encourage an increase in demand. The Otterpool Park Transport Strategy proposes an overall bus service frequency enhancement (including all services) to 4 to 6 buses per hour, which is expected to be sufficient to meet the demand predicted in Table 115 and Table 116. The proposed level of provision would provide greater capacity that would accommodate the expected increase in demand above the level predicted by current travel behaviour patterns on which the above calculations are based. Moreover, with bus services, the higher the frequency the more likely that patronage would be attracted as a 'turn up and go' service can be achieved.

Internal Bus Network

- 13.4.6 Table 115 and Table 116 in Chapter 12 estimates a total of 158 internal Bus-only trips in the AM peak hour and 124 in the PM peak hour. In addition, a proportion of the external Train trips, could be expected to utilise an internal bus service to access Westenhanger Station. Since the routing required to satisfy this internal demand is not currently met by existing bus services, these trips have not been assigned to existing service numbers.
- 13.4.7 The significant increase in local resident and working population that would arise from the Otterpool Park development is expected to justify a marked increase is service provision, which corresponds with the proposals in the Otterpool Park Transport Strategy for an increase to between 4 and 6 buses per hour. Most important is the change to existing bus routing to reach all areas of the site, which could be achieved in a number of ways, through diversion of existing services or the provision of new services that route externally or just internally.
- 13.4.8 Discussions are ongoing with KCC and the bus operator as to the delivery of bus services for the development and various means of provision will be considered including use of demand responsive services.

13.5 Effects on Rail Network

13.5.1 Error! Reference source not found. Table 118 provided the estimated distribution of the peak rail t rips according to the agreed method of trip distribution. The distribution of these trips in terms of east/west services is provided in Table 129 and Table 130 for the Best Case and User Survey scenario respectively.

Table 129 AM and PM Peak External Rail Trips by Route Direction – Best Case Scenario (2044 8.5k)

	Number of Trips							
Direction	AM Peak Hour				PM Peak Hour			
	Arr	Dep	2-Way	Arr	Dep	2-Way		
East	614	238	852	207	547	754		
West	540	793	1,333	668	477	1,145		
Total	1,154	1,031	2,185	875	1,024	1,899		

Table 130 AM and PM Peak External Rail Trips by Route Direction – User Survey Scenario (2044 8.5k)

Direction	Number of Trips					
	AM Peak Hour			PM Peak Hour		
	Arr	Dep	2-Way	Arr	Dep	2-Way
East	422	175	597	114	340	455
West	384	544	928	405	289	694
Total	806	719	1,525	519	629	1,148

13.5.2 It is unlikely that the existing service provision would be capable of accommodating the increase in patronage suggested by the Best Case and User Survey scenarios. The current service provision at Westenhanger Station and are constrained by the current poor accessibility to services at the station, which offers limited car parking, no bus service interchange, limited opportunities for cycle parking and restricted walk access for mobility impaired persons.

- 13.5.3 Even with no change in service provision, the significant improvements to the accessibility of Westenhanger station by all modes would generate an increase in demand. The citing of the Business Park and the highest density of residential housing within walking and cycling distance of the station would provide a large pool of potential passengers that could be encouraged to travel by rail to/from ODs located near stations on the same or connecting routes. This includes Ashford and Dover, which are the two locations from which most commuters currently travel into the area, and London, which currently draws over 60% of all commuters out of the area.
- 13.5.4 The effect on rail patronage that the proposed development and the Transport Strategy would have is difficult to quantify and the implementation of the aspiration to provide access to high speed rail services from Westenhanger would have wider implications. Further assessment work would be undertaken in discussion with Network Rail and changes to rail patronage would be monitored over time as the development phases are built out. The Transport Strategy recognises the importance of providing a greatly improved level of accessibility to the station for early occupation, depending on the outcome of discussions regarding improvements. Equally important is the necessity to upgrade passenger facilities within the station, including a new station building and information services.
- 13.5.5 The Core Strategy Review (2020, with 2021 Main Modifications) references upgrades to Westenhanger Station being necessary to provide the capacity to enable a high speed service ready and integrated transport hub. This will be in partnership with Network Rail, the rail operator and KCC. Furthermore, there is support for the provision of High Speed 1 (HS1) services to Westenhanger Station, improved timetable and new rolling stock as included in the Kent Rail Strategy 2021. These potential upgrades would improve the rail provision and capacity at Westenhanger Station and as well as the Otterpool Park development.
- 13.5.6 The potential rail service enhancements and scope of work for improvements and their phasing envisaged at Westenhanger Station is summarised in the Transport Strategy (ES Appendix 16.5) and could include:
 - Upgraded passenger waiting facilities and information
 - Platform extensions
 - A new pedestrian overbridge between platforms
 - Lift access to platforms
 - Secure cycle storage
 - Bus interchange
 - Parking including EV charging spaces
 - Potential for commercial provision of café/ retail facilities.

14 Conclusions

- 14.1.1 This Transport Assessment (TA) is prepared in support of an outline planning application seeking permission for the redevelopment of the site through the demolition of identified existing buildings and erection of a residential led mixed use development comprising up to 8,500 residential homes including market and affordable homes; age restricted homes, assisted living homes, extra care facilities, care homes, sheltered housing and care villages; a range of community uses including primary and secondary schools, health centres and nursery facilities; retail and related uses; leisure facilities; business and commercial uses; open space and public realm; sustainable urban drainage systems; utility and energy facilities and infrastructure; waste water infrastructure and management facilities; vehicular bridge links; undercroft, surface and multi-storey car parking; creation of new vehicular and pedestrian accesses into the site, and creation of a new vehicular, pedestrian and cycle network within the site; improvements to the existing highway and local road network; lighting; engineering works, infrastructure and associated facilities; together with interim works or temporary structures required by the development and other associated works including temporary meanwhile uses. Layout, scale, appearance, landscaping and means of access are reserved for approval.
- 14.1.2 In addition to the outline application development, a wider Otterpool Park Framework Masterplan Area (OPFM) includes for up to 10,000 homes which has also been assessed.
- 14.1.3 The proposals for Otterpool Park represent a new garden settlement based on sustainable living and sustainable travel and would accord with the requirements of local, regional and national policy requirements and guidance.
- 14.1.4 Current conditions on parts of the existing walking and cycling networks would be insufficient to accommodate significant future growth. Service frequency on the local bus network as well as accessibility to bus and rail services is poor. Several parts of the highway network currently operate with capacity constraints with conditions expected to worsen in future while many other parts of the network are predicted to require capacity enhancements without the Otterpool Park development.
- 14.1.5 Proposals to provide pedestrian/cycle priority on key desire lines inside the site and at locations linking to existing external walk/cycle routes would significantly improve conditions for vulnerable road users at these locations. Improvements to bus and rail accessibility and services along with the Transport Strategy and Framework Travel Plan measures would encourage a shift to travel by sustainable modes as estimated for the Best Case and User Survey scenarios using the User Centric approach.
- 14.1.6 The highway network has been assessed using the traditional 'predict and provide' methodology based on historical data and travel patterns, hence a worst-case scenario for vehicle trips. This approach has been used to determine the potential effect the development would have on key junctions identified by Kent County Council, Folkestone & Hythe District Council and National Highways. The proposed approach at Otterpool Park is to go beyond existing policy requirements and it is intended that the worst-case vehicle trip generation scenario forecast in the TA will not be reached, because site users will opt to travel using the sustainable alternative modes offered by the development instead. Based upon the junction capacity assessments and the proposed interventions It is considered that the Otterpool development traffic can be mitigated so as to not have a severe impact on the network. A Monitor and Manage Framework is proposed as part of the Core Strategy to provide mitigation for the Strategic Road Network.
- 14.1.7 It is anticipated that further discussions regarding the proposed mitigation will be held with Kent County Council, Folkestone & Hythe District Council and National Highways following submission of the Otterpool Park planning application. It is therefore concluded that there are no transport reasons why planning permission should not be granted for the proposed development.

Arcadis (UK) Limited

Corner Block 2 Cornwall Street Birmingham B3 2DX United Kingdom

T: +44 (0)121 503 2700

arcadis.com