

APPENDICES

APPENDIX A Original 2019 TA Scoping Note

OTTERPOOL PARK

Transport Assessment Scoping Report

OCTOBER 2018

CONTACTS

PHILLIP LONGMAN Associate Technical Director

dd +020 3014 9100 e Phillip.Longman@arcadis.com Arcadis.

Arcadis House 34 York Way London N1 9AB United Kingdom

Arcadis Consulting (UK) Limited is a private limited company registered in England & Wales (registered number 02212959). Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK.

VERSION CONTROL

Version	Date	Author	Changes
1	8/8/2017	PL	-
2	4/10/2018	PL	Updates following completion of scoping

CONTENTS

1	INTRODUCTION AND BACKGROUND	1
1.1	Introduction	1
1.2	Consultation	1
1.3	Structure of this Note	4
2	POLICY AND TECHNICAL CONTENT	5
2.1	Policy	5
2.2	Technical Guidance	5
3	BASELINE	7
3.1	Introduction	7
3.2	Data Collection	7
3.2.1	Desk-top information	7
3.2.2	On-site information	7
3.3	Baseline Scenarios	8
3.4	Site Location and Description	8
3.5	Pedestrian and Cycle Networks	8
3.6	Public Transport	8
3.7	Local Highway Network	8
3.8	Adjacent Developments	9
3.9	On-Street Parking	9
3.10	Road Safety	9
3.11	Committed Developments	9
4	ASSESSMENT METHODS AND FORECASTING	10
4.1	Development Proposals	10
4.2	Temporal Scope of Assessment	10
4.3	Trip Generation, Mode Share and Distribution	10
4.4	Method of Assessment	10
4.4.1	General Approach	10
4.4.2	Pedestrian and Cycle Routes	10
4.4.3	Public Transport	10
4.4.4	Highway Capacity	11
4.5	Implementation Plan	14

TABLES

Table 1 Assessm	Kent County Council / Folkestone & Hythe District Council Comments on Scope of Transport ent	. 1
Table 2	Folkstone & Hythe District Council Comments on Scope of Transport Assessment	. 2
Table 3	Highways England Comments on Scope of Transport Assessment	. 2
Table 4	Ashford Borough Council Comments on Scope of Transport Assessment	. 3
Table 5	Canterbury City Council Comments on Scope of Transport Assessment	. 3
Table 6	Junctions to be Assessed	12

APPENDICES

APPENDIX A

Scoping information submitted to KCC to agree scope of work required in Canterbury

APPENDIX B

Vehicle Traffic Survey Data Provided by Folkstone & Hythe District Council Vehicle Traffic Survey Data Provided by Corinthian Mountfield Ltd

APPENDIX C

Vehicle Traffic Survey Data Collected July 2017

APPENDIX D ANPR Data Collected July 2017

APPENDIX E Local Footpaths and Bridleways

APPENDIX F

Extent of VISUM model Extent of VISSIM model

1 Introduction and Background

1.1 Introduction

Arcadis Consulting (UK) Limited was appointed in August 2016 to develop a masterplan and planning submission in respect of the proposed garden settlement called Otterpool Park.

A Transport Assessment (TA) will be produced to accompany the planning application, which is anticipated to be submitted in 2018, that will set out the transport issues relating to the development proposals. Measures will be identified to mitigate adverse transport effects of the scheme. Consideration will be given to the effects on all modes of travel.

In August 2017, a Scoping Report¹ was issued to Kent County Council (KCC), Folkstone & Hythe District Council (F&H DC) and Highways England (HE) to provide a description of the work proposed to be undertaken as part of the TA and set out the proposed technical, spatial and temporal scope of the TA. This Report represents a revision of the August 2017 report incorporating comments received during scoping discussions.

1.2 Consultation

A number of consultation meetings have been held with KCC, SDC and Highways England (HE) to allow methodologies and outcomes to be agreed. In addition, consultation events have been held involving wider stakeholders. Comments have also been received from Canterbury City Council. The comments received and the action taken to reach a resolution to each comment is summarised in Table 1 to Table 5.

Table 1 Kent County Council / Folkestone & Hythe District Council Comments on Scope of Transport Assessment

Issue Raised	Resolution	
Regional Policy – Growth Without Gridlock has now been superseded by LTP 4 which was adopted by KCC at a cabinet a few weeks ago and should therefore be removed	Noted and removed.	
Technical Guidance – I would also suggest you include KCC's Interim Guidance Notes 1, 2 and 3 in your technical reference documents	Noted and included.	
Baseline Scenarios – We would also expect there to be a baseline scenario for the year of planning application (2018), you could simply use TEMPro growth figures to increase the traffic count data from the baseline traffic counts	2018 included as baseline year of assessment. TEMPro used to derive growth factors.	
Traffic Data – Although the use of October 2016 data is acceptable, it should be subject to TEMPRO growth rates to reflect the baseline condition at the year of application.		
Local Highway Network – The four baseline scenarios should be obtained from SDC from the District Transport Model	Further discussions concluded that forecast traffic is to be calculated using TEMPro adjusted to include	
Committed Development – Again the future baseline traffic data should be provided by SDC from the District Transport Model	the most recent nousing and employment lorecasts.	
Assessment years and scenarios – Do we know what is the completion date of the Otterpool Park development? If this is different to 2037 then it may need to be included in the assessment year scenario.	Completion year of 2044 to be included in assessment.	

¹ Otterpool Park Garden Settlement Transport Assessment Scoping Report (Arcadis, August 2017)

Otterpool Park

Transport Assessment Scoping Report

Issue Raised	Resolution
Operation Stack is an emergency procedure I do not think it is appropriate to include this within the assessment.	Noted and agreed.
We feel that the following two junctions need to be included in the junction assessment together with the proposed capacity improvements by the South Canterbury site:	These two junctions have been included in the assessment.
1) Nackington Road / Old Dover Road	
2) Old Dover Road / The Drive / St Lawrence Road	

Table 2 Folkstone & Hythe District Council Comments on Scope of Transport Assessment

Issue Raised	Resolution
On the Lorry Park issue we do not think it needs to be scoped in at this stage. The main caveat to this is if details emerge later on and the ES needs to be reviewed at some point then this position might be subject to change but at the moment we can't speculate on what the outcome of the consultation will be and it is too early in the process.	Noted and agreed.
Merge/diverge assessments will be required.	Noted and included in assessment.

Table 3 Highways England Comments on Scope of Transport Assessment

Issue Raised	Resolution
The baseline is proposed to be 2017 - this should be reflective of the year of submission e.g. 2018	2018 included as baseline year of assessment.
Future forecast year is proposed to be 2037 to reflect end of local plan period. The 2037 forecast will include the full development scheme. We will required information on what phases / proportion of the development will be built by 2037 and what will be after that. If a significant proportion of the development will be post-2037 we may require a further future year forecast.	Completion year of 2044 to be included in assessment.
Peak hours are to be assessed (0800-0900 and 1700-1800) – agreed this is sensible however will need to be confirmed on review of traffic survey data.	This has been confirmed through analysis of traffic survey data.
Committed development is to be taken into account. This should include consideration of the overnight parking element of the Lorry Holding Area (500 spaces) and all sites allocated within relevant Local Plan(s). We would also wish to receive your thoughts on how Otterpool will incorporate resilience such that it continues to be able to operate when the likes of Operation Stack (or it's successors) are implemented.	A strategy to maintain resilience during periods of implementation of Operation Stack will be included.
Dependant on traffic flow volumes, there may be a requirement for merge / diverge assessments as per DMRB TD22/06 at relevant junctions.	Noted and included in assessment.

Otterpool Park

Transport Assessment Scoping Report

Issue Raised	Resolution
The assessment of M20 J9 in terms of percentage increases in flows is not agreed – in terms of the percentage impact approach, a small percentage increase in a large volume of traffic could be a large number of additional vehicles. Equally in some places a single additional vehicle could cause safety and/ or operational issues at a junction. Therefore percentage increases in flows are not considered appropriate when assessing impacts/mitigation. While increase in traffic volume is an element which needs to be considered a key concern will be the impact of the development on safety and operation, which relates to changes in queues and delays. We will therefore require evidence that the proposed development will not increase queues and delays to a point where they impact the safety and operation of the SRN.	M20 Junction 9 is included in the assessment. Effects of the development will be summarised in terms of changes in queues and delays between the 'Do Minimum' forecast year without Otterpool Park development and the 'Do Something' forecast year with Otterpool Park development.
Consideration of the impact of the development on M20 J10a should also be included.	M20 Junction 10A is included in the assessment.
We would question any forecasting based upon SERTM. This model is effectively a base from which more detailed models can be produced as it has limited disaggregation of matrices and limited network coverage. Any forecasts even those produced recently are likely to be out of date as Local Authority OANs locally (Ashford, Shepway and Dover for example) are evolving all the time	Forecast traffic has been calculated using TEMPro adjusted to include the most recent housing and employment forecasts.
Use of TEMPro factors would be acceptable but you will need to check that the household and employment assumptions are correct. Given that OAN is calculated locally they can be out of date on TEMPro release or soon after.	

Table 4 Ashford Borough Council Comments on Scope of Transport Assessment

Issue Raised	Resolution
We point out the importance of considering the impacts of this development on the rural road network, particularly in its westward movements along the B2067 along the Saxon Shore, and along the Roman Road which runs through Aldington.	Impacts on the B2067 Aldington Road at the junction with Otterpool Lane has been included in the assessment, as agreed with KCC.

Table 5 Canterbury City Council Comments on Scope of Transport Assessment

Issue Raised	Resolution
Committed growth in the Canterbury District Local Plan 2017 should be considered.	Most recent forecasts of housing and employment for Canterbury have been used to derive TEMPro forecasts.
This growth will need to be taken account of in the assessment if developments are within a reasonable distance of the Otterpool Park site and are considered likely to have the potential to generate significant traffic effects.	The significance of likely effects generated by Otterpool Park on routes into Canterbury was investigated and discussed with KCC. It was subsequently agreed to include the Nackington

Issue Raised	Resolution
modelling includes routes into Canterbury, particularly Stone Street and Nackington Road.	Road / Old Dover Road and Old Dover Road / The Drive / St Lawrence Road junctions within the assessment. Information submitted as part of this scoping process is included in Appendix A to this Scoping Report.

This revised Scoping Report incorporates the comments and changes described above.

1.3 Structure of this Note

The remainder of this Note is structured as follows:

Chapter 2	Policy and Technical Content
Chapter 3	Baseline
Chapter 4	Assessment Methods and Forecasting

2 Policy and Technical Content

2.1 Policy

The TA will include a summary of current transport planning policy and planning guidance in the context of the sites and the surrounding area. The TA will demonstrate how the development complies with transport and other relevant policies.

Relevant transport policies at the national, regional and local level will be outlined. The following documents will be consulted:

National Policy:

- 1. National Planning Policy Framework (NPPF) (March 2012 and various updates);
- 2. The Strategic Road Network and the Delivery of Sustainable Development Department for Transport (DfT) Circular 02/13 (DfT, September 2013);
- 3. The Strategic Road Network: Planning for the Future (Highways England, September 2015);

Regional Policy:

- 4. Local Transport Plan 4: Delivering Growth without Gridlock 2016-2031, (KCC, October 2016);
- 5. Supplementary Planning Guidance SPG4: Kent Vehicle Parking Standards (KCC, July 2006);

Local Policy:

- 6. Folkstone & Hythe Core Strategy, (F&H DC, 2013);
- 7. Folkstone & Hythe District Council Transport Strategy, (F&H DC, February 2011);
- 8. Places and Policies Local Plan, Preferred Options, (F&H DC, October 2016).

2.2 Technical Guidance

KCC guidelines for the preparation of TAs for development² have been archived along with the national guidelines³ produced by the DfT. TA guidance is now incorporated into the NPPF. Paragraph 32 of the NPPF states:

"All developments that generate significant amounts of movement should be supported by a Transport Statement or Transport Assessment. Plans and decisions should take account of whether:

- the opportunities for sustainable transport modes have been taken up depending on the nature and location of the site, to reduce the need for major transport infrastructure;
- safe and suitable access to the site can be achieved for all people; and
- Improvements can be undertaken within the transport network that cost effectively limit the significant impacts of the development. Development should only be prevented or refused on transport grounds where the residual cumulative impacts of development are severe. "

² Guidance on Transport Assessments and Travel Plans (KCC, October 2008)

³ Guidance on Transport Assessment (DfT, 2007)

Otterpool Park Transport Assessment Scoping Report

A set of Planning Practice Guidance has been published to inform how the principle of the NPPF should be practiced. Those that specifically relate to transport matters are:

- 1. Travel Plans, Transport Assessments and Statements in Decision-Taking (March 2014); and
- 2. Transport Evidence Bases in Plan Making and Decision Taking (October 2014).

These guidelines provide a common approach which are aimed at ensuring that all relevant issues have been addressed within an assessment.

The TA for the Otterpool Park site will adopt the national guidelines and approaches where possible, taking account of the specific nature of the development. If divergence from the guidelines is required to address project-specific issues, an alternative approach will be discussed and agreed with KCC prior to the planning application submission.

Where appropriate a range of other technical reference documents will be consulted in developing the assessment and mitigation proposals. These may include:

- 1. The Kent Design Guide (Kent Design Initiative, December 2005);
- 2. Kent County Council Interim Guidance Notes 1, 2 and 3;
- 3. The Design Manual for Roads and Bridges, (DfT, various dates);
- 4. The Manual for Streets, (Department for Communities and Local Government (DCLG) / DfT, 2007);
- 5. The Manual for Streets 2, CIHT, 2010 a companion guide to Manual for Streets (DCLG / DfT, 2010); and
- 6. Travel Plan Guidelines, (DfT, various dates).

3 Baseline

3.1 Introduction

Existing transport conditions in and around the site will be established to provide baseline data against which the potential effects arising from the scheme can be assessed.

Baseline observations will be informed by site visits, collation of available information from KCC, SDC and other sources and on-site data collection.

The following sections describe the baseline data to be provided within the TA report.

3.2 Data Collection

A variety of methods will be used to collect data that may be relevant to the preparation of the TA. These divide into two primary sources; 'desk-top' information and 'on-site' information.

3.2.1 Desk-top information

This information includes:

- 1. Accident record data for the most recent 36 months covering an area within the site boundary and up to 500m from it;
- 2. Bus timetable and routing information. Bus patronage data will be included if the data is made available;
- 3. Rail timetable and routing information. Rail patronage data will be included if the data is made available;
- 4. Traffic flow data provided by F&H DC, as listed in Appendix B;
- 5. Traffic flow data provided by Corinthian Mountfield Ltd, as listed in Appendix B;
- 6. Traffic signal timing data for all signalled junctions included in the scope of the highway capacity modelling. The list of junctions in included in in Chapter 4; and
- 7. Pedestrian and cycle route networks.

3.2.2 On-site information

A programme of on-site data collection has been developed through discussion with KCC/ F&H DC with the aim of undertaking the majority of the necessary field work prior to the end of September 2017.

The data to be collected is described in the following sections.

- Manual classified vehicle turning counts: This data is being collected at junctions that are included in the scope of the highway capacity modelling, as described in Chapter 4. A list of junctions at which this data is to be collected in contained in Appendix C;
- 2. Automatic number plate recognition (ANPR) surveys: Locations at which ANPR data is to be collected is shown in Appendix D;
- 3. Pedestrian flow surveys: This data will be collected on the existing pedestrian network in the vicinity of the site. Appendix E presents the extent of the network on which survey data may be collected.

3.3 Baseline Scenarios

Four baseline scenarios will be created to inform the assessment. These will comprise:

- 1. 2018 pre-construction 'no scheme' baseline, drawing on existing data;
- 2. A future year 'no scheme' baseline, reflecting anticipated baseline conditions in 2037 at the end of the Local Plan period. The future year 'no scheme' baseline will make allowance for the effects of committed development or infrastructure schemes;
- 3. A future year 'no scheme' baseline, reflecting anticipated baseline conditions in 2044, the year of full build-out for the main scheme, including allowance for the effects of committed development or infrastructure schemes; and
- 4. A future year 'no scheme' baseline, reflecting anticipated baseline conditions in 2046, the year of full build-out for the aspirational masterplan scheme, including allowance for the effects of committed development or infrastructure schemes.

3.4 Site Location and Description

The TA will describe and illustrate the geographical location of the proposed site in relation to current land uses and the local transport networks and amenities.

3.5 Pedestrian and Cycle Networks

The TA will describe existing walking and cycling networks and facilities, including pedestrian / Toucan crossings, cycle routes and cycle parking.

Pedestrian and cycle flows derived from data collection sources will be presented.

3.6 Public Transport

The TA will outline existing public transport services operating in the area surrounding the site together with known proposals for new services.

The geographic threshold for considering public transport services will reflect the thresholds considered as accessible to the site, typically covering distances of 400m and 960m from the site for bus and rail services respectively.

Information will be provided on the routes/lines and frequency of nearby mainline rail services.

A review of the existing bus network will be undertaken to provide details on bus routes and frequencies to form the baseline for assessment. Any current enhancement proposals likely to be implemented during the construction period will be identified and included. This will be undertaken in conjunction with KCC and SDC.

Details of existing bus stop and stand locations and bus priority measures within the site boundary will be recorded.

Details of any specific taxi infrastructure, such as rank locations, will be included in the baseline conditions.

3.7 Local Highway Network

The TA will identify the road hierarchy, authority responsibilities and key elements of the surrounding highway network.

Existing traffic conditions on the local highway network will be established from traffic surveys and modelled data.

As agreed, baseline traffic forecasts for the four baseline scenarios will be obtained from KCC from the regional traffic model.

Otterpool Park Transport Assessment Scoping Report

3.8 Adjacent Developments

The TA will identify existing access provision for parking and servicing at properties adjacent to the development to ensure that any effects on access to these properties are identified as part of the assessment.

3.9 On-Street Parking

The TA will identify existing on-street parking within the site boundary.

It will outline existing parking conditions, including on-street loading provision and controls.

3.10 Road Safety

The TA will include an analysis of accident data for the local roads within the site boundary and within 500 metres of it for the most recent 36 months of data available.

The analysis will consider the severity, casualty type and location of recorded accidents.

3.11 Committed Developments

The assessment will include traffic generation of committed and planned developments. Further information is provided in Chapter 4 of this Note.

The following committed transport infrastructure/improvement schemes will be taken into account:

- 1. New M20 Junction 10A and associated changes to the surrounding road network, including M20 Junction 10;
- 2. New signalised site access junction on A20 Hythe Road for Willesborough Lees development;
- 3. Traffic calming proposals and new site accesses through Sellindge Village proposed for the Sellindge residential development;
- 4. Adjustments to the flare length on the A261 Hythe Road at the junction with A20 Ashford Road required for the Land East of Ashford Road development;
- 5. A2034 Cheriton Road / A20 Cherry Garden Avenue junction and link proposals for the Folkstone Seafront masterplan;
- 6. Military Way parking suspension east of junction with Scanlons Bridge Road; and
- 7. Nackington Road / Old Dover Road and Old Dover Road / St Lawrence Road / The Drive proposals for the Mountfield Park development.

4 Assessment Methods and Forecasting

4.1 **Development Proposals**

The TA will include a description of the development proposals, including site layout, access strategies for vehicles, pedestrians and public transport, as well as outline parking and servicing proposals.

The TA will demonstrate the adequacy of access points in relation to capacity and vehicle manoeuvring. It will provide preliminary junction layouts and consider safety for all users.

4.2 Temporal Scope of Assessment

For each assessment year a weekday morning peak period (0800 to 0900) and a weekday evening peak period (1700 to 1800) will be assessed. This aligns with the local network peak periods as calculated from traffic survey data.

4.3 Trip Generation, Mode Share and Distribution

The method for the calculation of trip generation, the determination of trip mode share and the distribution of trips is described in a series of technical notes⁴⁵⁶ that form the agreement to the methods for use in the assessment with KCC and SDC.

These notes will be updated to reflect the agreed methods once discussions have been completed and provided as appendices to the Scoping Note once the scope is agreed.

4.4 Method of Assessment

4.4.1 General Approach

The methodology for the assessment will vary depending upon the mode of transport being examined. However, the general approach will be to assess the proposals, identify effects, determine any additional or different mitigation necessary, and revise the assessments accordingly.

4.4.2 Pedestrian and Cycle Routes

The TA will outline the assessed effects on pedestrian and cycle networks within the development site after full build-out and occupation, taking into account any committed pedestrian and cycle improvement schemes and any mitigation measures proposed as part of the Otterpool Park development. Consideration will also be given to linkages to key pedestrian or cycle destinations that would be affected by the project.

The assessment will identify the likely effects on pedestrians and cyclists in terms of severance, safety, altered journey times and the needs of mobility-impaired users.

4.4.3 Public Transport

The assessment of the public transport networks will identify the expected additional loads on local rail and bus connections based on the agreed mode share and assignment methodology. Where relevant, the assessment will use the outcomes of the highway network assessment to indicate whether road-based public transport services would be likely to experience changes in journey time.

The assessment will take account of any changes to infrastructure, network routing and frequencies resulting from committed public transport proposals and proposals that form part of the public transport access strategy for Otterpool Park.

⁴ Otterpool Park Garden Settlement Trip Generation Calculation Method Technical Note (Arcadis, September 2018)

⁵ Otterpool Park Garden Settlement Method for deriving Mode Splits (Arcadis, October 2018)

⁶ Otterpool Park Garden Settlement Method for the Distribution of External Vehicle Trips (Arcadis, October 2018)

4.4.4 Highway Capacity

4.4.4.1 Method and Scope of assessment

The extent of highway network to be included in the assessment was discussed with KCC, F&H DC and HE. KCC requested that a VISSIM model be produced to assess the local junctions most likely to be impacted by the development while a number of other junctions would be assessed using the appropriate LinSig, Arcady or Picady software. Merge/diverge assessments will be undertaken as appropriate. presents the existing and committed junctions identified for assessment.

Model validation reports were submitted to KCC, F&H DC and HE in May 2018. As of October 2018, discussions with HE on the VISSIM model are ongoing. If the VISSIM modelling is not completed in time for submission in the TA, the results and conclusions will be provided post-submission.

4.4.4.2 Method of Development Trip Assignment

The distribution of development vehicle flows between the site and a number of off-site origins/destinations has been calculated using a gravity model method. This distribution will be input a VISUM model to distribute the development flows on the network and allow us to identify the likely routing. The development flow distribution will be extracted from the VISUM model and input the LinSig, Arcady and VISSIM models statically. The VISUM model will be validated against the observed turning counts and journey time captured on site. The proposed extent of the VISUM and VISSIM models are shown in Appendix F.

4.4.4.3 Assessment years and scenarios

As described in Chapter 3, we anticipate the creation of four baseline scenarios; for 2018, 2037, 2044 and 2046. The 2044 scenario will form the main assessment, while the 2046 scenario will consider a sensitivity test of an extended masterplan scenario. Future year 'no-scheme' baseline scenarios will be created and used as the basis for forecasting the 'with-scheme' situation for each assessment year.

The assessment will add the expected transport network activity to the future year baseline scenarios.

The following assessment scenarios will be undertaken for each assessment year:

- 1. Base traffic flows + committed development traffic flows; and
- 2. Base traffic flows + committed development traffic flows + Otterpool Park development flows.

It was agreed with KCC and F&H DC that construction vehicle movements would occur outside of the local peak network periods and therefore would not be included in the assessment.

4.4.4.4 Traffic Data and Forecasting

The baseline and future baseline scenarios will be developed using traffic survey data to produce a set of baseline information to which forecast scheme traffic can be added.

Traffic count data for a number of the junctions in has been provided by F&H DC. This data was collected in October 2016 and it has been agreed that it is suitable for use for the assessment of the Otterpool Park development. Further traffic data has been collected in June 2017. The results of the surveys will be validated against the 2016 traffic counts. The data collected in June 2017 included Automatic Number Plate Recognition data for roundabouts, gyratories and all entries/exits to/from the VISSIM model area.

Initially it was agreed with KCC, SDC and HE that the future year base traffic flows would be provided from the strategic highway model. During the development of the modelling, HE suggested to obtain the future year base flows from the baseline flows applying TEMPro growth factors. Employment and household forecasts obtained from KCC were used to generate TEMPro growth factors. HE also suggested that a growth factor of 0.6% should be assumed for heavy goods vehicle traffic on the M20.

Otterpool Park Transport Assessment Scoping Report

Table 6 Junctions to be Assessed

ID	Junction Name
J1	M20 J10
J2	M20 J11
J3	Ashford Road (A20) / Swan Lane
J4	Ashford Road (A20) / Stone Hill
J5	Hythe Road (A20) / Station Road / Church Road
J6	Hythe Road (A20) / Meersham
J7a	A2070 Kenniton Road / The Street
J7b	Hythe Road (A20) / The Street
J8	A20 Ashford Road / B2067 Otterpool Lane
J9	B2067 Otterpool Lane / Aldington Road
J10	Aldington Road / Stone Street
J11a	A20 Ashford Road / A261 Hythe Road / Stone Street
J11b	A20 Ashford Road / A261 Hythe Road / Stone Street
J12	Aldington Road / Lympne Hill
J13	A261 Hythe Road / Aldington Road
J14	A261 London Road / Barrack Hill
J15	A259 / Dymchurch Road / Military Road
J16	A259 Prospect Road / A259 East Road / Station Road / High Street
J17	A20 Ashford Road / A20 J11 offslip
J18	Ashford Road (A20) / Sandling Road
J19	M20 J11A
J20	M20 J12
J21a	M20 J13
J21b	M20 J13
J22	A20 Ashford Road / Stone Street
J23	M20 J9
J24	B2064 Cheriton High Street / B2063 Risborough Lane
J25	B2064 Cheriton High Street / A2034 Cherry Garden Avenue
J26	A259 Prospect Road / Stade Street
J27	Barrow Hill 1-way
SH18	A260 Spitfire Way / White Horse Hill / A20 Slip Roads
SH19	Alkham Valley Road / A20 slip roads
SH16	A260 Canterbury Road / Alkham Valley Road
J31	A20 Ashford Road access to P1B & P7
J32	A20 Ashford Road access to P6
J33	A20 Ashford Road Link Road west
J34	A20 Ashford Road access to P1A & P2A
J35	A20 Ashford Road Link Road east
J36	A20 Ashford Road Business Park access
J37	Otterpool Lane access to P1B
J38	Otterpool Lane access to P2B & P3B
J39	A20 Ashford Road Link Road / High Street
J40	Otterpool Lane P9 north
J41	Otterpool Lane P9 south
J42	M20 J10A
J43	A20 Ashford Rd small roundabout
J44	Nackington Road / Old Dover / Road Old Dover Rd / St Lawrence Rd / The Drive

4.4.4.5 Operation Stack / Lorry Park Proposals

It was agreed with KCC, F&H DC and HE that the effects of Operation Stack would not be assessed as it is an emergency procedure and is therefore not appropriate to include this within the assessment. As requested by HE, a strategy will be proposed to mitigate the effect of Operation Stack where possible if it occurs.

Since there are no committed scheme proposals for a Lorry Park and no planned scheme proposals are available, it is not possible to consider the potential affects of a Lorry Park in the assessment.

4.4.4.6 Highway mitigation

Where the assessment identifies effects which will require mitigation, appropriate mitigation solutions will be developed and discussed with KCC, F&H DC and, where necessary, HE.

Agreement will be sought on the most appropriate solutions to mitigate effects and the agreed solutions will be re-assessed and reported in the TA. If it is not possible to conclude discussions on mitigation requirements prior to submission of the TA, discussions will continue following submission.

4.5 Implementation Plan

The TA will present a proposed strategy for the coordination and implementation of the mitigation measures identified from the assessment.

This Implementation Plan will integrate the key elements of the construction logistics strategy, construction activity programme and identified mitigation measures to present a comprehensive strategy for managing and mitigation transport effects arising from the scheme.

The Implementation Plan is intended to act as the 'umbrella' under which more detailed discussions can take place with stakeholders during the construction phase. It will recognise the need for flexibility to respond to changing circumstances during the construction period, to allow all parties to review progress and address transport issues that may arise.

Otterpool Park Transport Assessment Scoping Report

APPENDIX A

Scoping information submitted to KCC to agree scope of work required in Canterbury

Longman, Phillip

From: Sent:	Longman, Phillip 12 July 2018 13:15
10:	colin.finch@kent.gov.uk; James.Hammond@folkestone-hythe.gov.uk; Matt.Hogben@kent.gov.uk; sally.benge@kent.gov.uk
Cc:	Kearney, Rebecca; Collins, Chad; Maria Rosa Gallego
Subject:	Otterpool Park Canterbury Trip Distribution Assessment
Attachments:	Otterpool Park Canterbury Trip Distribution v1.1.xlsx
Follow Up Flag:	Follow up
Flag Status:	Completed

Dear All

Following the request from Canterbury City Council to consider the impact of Otterpool Park on the City, I have extended our vehicle trip distribution model to include Canterbury in more detail. Previously, Canterbury was included in our distribution model as a single zone, which did not provide the vehicle routing of trips in enough detail to consider impact on individual junctions in Canterbury. We have now included Canterbury in our distribution model as 23 individual zones. The zones have been chosen by generating clusters of Lower Level Super Output Areas, as defined in Census 2011, according to the likely vehicle routing to each cluster. The attached spreadsheet shows the location of the centre of each zone in the sheet called "GM Zone Centres".

The 23 zones have been included in our three gravity models (one for incoming commuting trips, one for outgoing commuting trips and one for residential trips for non-work purposes), enabling us to determine the number of vehicle trips expected to be generated by the Otterpool Park development to/from each zone. The routes vehicles would take between each zone and Otterpool Park were determined using the vehicle routing tool on Google Maps.

This method of vehicle trip distribution is the method agreed with KCC, Folkstone & Hythe DC and Highways England for all other zones within our assessment area, including Ashford and Folkstone for which it had been necessary to consider likely vehicle routing in a similar level of detail.

You sent us a junction plan taken from the South Canterbury application (shown in sheet "Canterbury Junctions" in the spreadsheet) that identifies 11 existing junctions. The spreadsheet shows the distribution of Otterpool Park vehicle trips through these junctions for the AM and PM peak (sheets "AM Peak Devt Flows" and "PM Peak Devt Flows"). These flows are for full occupation of Otterpool Park at the end year (2044) of our main assessment.

We then extracted future base flows from the Mountfield Park Transport Assessment (sheet "2031 baseline"). These are the 2031 Base + Development flows for 4,000 homes + 45,000sqm commercial space. Sheets "2031 AM Base" and "2031 PM Base" show these trips on our network. We then compared our 2044 development trips to the 2031 baseline trips and calculated a percentage flow increase on each arm of each junction (sheets "Future AM %" and "Future PM %").

Our development flows through the junctions are low and the percentage flow increases range from less than 1% to up to 5%. As we are comparing 2044 development flows against a 2031 baseline, I would expect the flow increase against a 2044 baseline to be even lower.

I would be very grateful if you could review this information and let me know your thoughts on the requirement for further testing of these junctions in the Otterpool Park Transport Assessment.

Kind regards,

Phil

Phillip Longman Associate Technical Director Transport Planning & Urban Design

Phillip.Longman@arcadis.com Arcadis Consulting (UK Limited) Bernard Weatherill House, 8 Mint Walk, Croydon CR0 1EA

T: 020 3014 9100 www.arcadis.com

Be green, leave it on the screen.

Arcadis Consulting (UK) Limited is a private limited company registered in England & Wales (registered number 02212959). Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK.

OTTERPOOL PARK GARDEN SETTLEMENT

Canterbury Trip Distribution

v1.1

12 July 2018

Zone Centroids used in Trip Distribution Gravity Models

Canterbury Junctions for Analysis

Ref.	
Junction 1	Bekesbourne Road/ A2 eastbound slip road
Junction 2	High Street/ Station Road/ Town Hill
Junction 3	Old Dover Road/ New Dover Road/ The Gate Inn/ P&R
Junction 4	New Dover Road/ St Lawrence Road
Junction 5	New Dover/ St George's Place/ Lower Chantry Lane
Junction 6	St George's Place/ A28 Lower Bridge Street
Junction 7	Old Dover Road/ Nackington Road
Junction 8	Old Dover Road/ St Lawrence Road
Junction 9	Ethelbert Road/ Old Dover Road
Junction 10	Old Dover Road/ Nunnery Fields/ Oaten Hill
Junction 11	Old Dover Road/ A28 Upper Bridge St

Canterbury 2031 Baseline Flows

Canterbury 2031 Baseline Flows

Canterbury 2031 Baseline Flows

Canterbury 2031 Baseline Flows

Longman, Phillip

From: Sent: To:	Matt.Hogben@kent.gov.uk 13 July 2018 09:04 Longman, Phillip; colin.finch@kent.gov.uk; James.Hammond@folkestone- hythe.gov.uk; sally.benge@kent.gov.uk
Cc:	Kearney, Rebecca; Collins, Chad; Maria Rosa Gallego
Subject:	RE: Otterpool Park Canterbury Trip Distribution Assessment
Follow Up Flag:	Follow up
Flag Status:	Completed

Hi Phil

Thank you for the e-mail. I have spoken to Colin on this matter. We feel that the following two junctions need to be included in the junction assessment together with the proposed capacity improvements by the South Canterbury site:

- 1) Nackington Road / Old Dover Road
- 2) Old Dover Road / The Drive / St Lawrence Road

Full details of the capacity improvements can be found in the South Canterbury Transport Assessment and Transport Assessment Addendum.

This is because the impact on these junctions is 5% and 4% respectively in the AM peak.

Furthermore we will be expecting the applicant to fund the provision of two new directional signs to the New Dover Road Park and Ride site from Faussett Hill and Bridge Road to sign drivers to use this route to access the Park and Ride site. This can be secured through a planning condition when planning permission is eventually granted for this site.

Regards

Matthew Hogben | Principal Transport and Development Planner | Ashford and Shepway | Highways and Transportation | Kent County Council | Ashford Highway Depot, 4 Javelin Way, Henwood Industrial Estate, Ashford, Kent, TN24 8AD | 03000 41 81 81 | www.kent.gov.uk

From: Longman, Phillip <Phillip.Longman@arcadis.com> Sent: 12 July 2018 13:15

To: Finch, Colin - GT HTW <colin.finch@kent.gov.uk>; James.Hammond@folkestone-hythe.gov.uk; Hogben, Matt - GT HTW <Matt.Hogben@kent.gov.uk>; Benge, Sally - GT HTW <sally.benge@kent.gov.uk>

Cc: Kearney, Rebecca <rebecca.kearney@arcadis.com>; Collins, Chad <Chad.Collins@arcadis.com>; Maria Rosa Gallego <MariaRosa.Gallego@arcadis.com>

Subject: Otterpool Park Canterbury Trip Distribution Assessment

Dear All

Following the request from Canterbury City Council to consider the impact of Otterpool Park on the City, I have extended our vehicle trip distribution model to include Canterbury in more detail. Previously, Canterbury was included in our distribution model as a single zone, which did not provide the vehicle routing of trips in enough detail to consider impact on individual junctions in Canterbury. We have now included Canterbury in our distribution model as 23 individual zones. The zones have been chosen by generating clusters of Lower Level Super

Output Areas, as defined in Census 2011, according to the likely vehicle routing to each cluster. The attached spreadsheet shows the location of the centre of each zone in the sheet called "GM Zone Centres".

The 23 zones have been included in our three gravity models (one for incoming commuting trips, one for outgoing commuting trips and one for residential trips for non-work purposes), enabling us to determine the number of vehicle trips expected to be generated by the Otterpool Park development to/from each zone. The routes vehicles would take between each zone and Otterpool Park were determined using the vehicle routing tool on Google Maps.

This method of vehicle trip distribution is the method agreed with KCC, Folkstone & Hythe DC and Highways England for all other zones within our assessment area, including Ashford and Folkstone for which it had been necessary to consider likely vehicle routing in a similar level of detail.

You sent us a junction plan taken from the South Canterbury application (shown in sheet "Canterbury Junctions" in the spreadsheet) that identifies 11 existing junctions. The spreadsheet shows the distribution of Otterpool Park vehicle trips through these junctions for the AM and PM peak (sheets "AM Peak Devt Flows" and "PM Peak Devt Flows"). These flows are for full occupation of Otterpool Park at the end year (2044) of our main assessment.

We then extracted future base flows from the Mountfield Park Transport Assessment (sheet "2031 baseline"). These are the 2031 Base + Development flows for 4,000 homes + 45,000sqm commercial space. Sheets "2031 AM Base" and "2031 PM Base" show these trips on our network. We then compared our 2044 development trips to the 2031 baseline trips and calculated a percentage flow increase on each arm of each junction (sheets "Future AM %" and "Future PM %").

Our development flows through the junctions are low and the percentage flow increases range from less than 1% to up to 5%. As we are comparing 2044 development flows against a 2031 baseline, I would expect the flow increase against a 2044 baseline to be even lower.

I would be very grateful if you could review this information and let me know your thoughts on the requirement for further testing of these junctions in the Otterpool Park Transport Assessment.

Kind regards,

Phil

Phillip Longman Associate Technical Director Transport Planning & Urban Design

Phillip.Longman@arcadis.com Arcadis Consulting (UK Limited) Bernard Weatherill House, 8 Mint Walk, Croydon CR0 1EA

T: 020 3014 9100 www.arcadis.com

Be green, leave it on the screen.

Arcadis Consulting (UK) Limited is a private limited company registered in England & Wales (registered number 02212959). Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

APPENDIX B

Vehicle Traffic Survey Data Provided by Folkstone & Hythe District Council

	Classified turning counts
1	B2067 Aldington Road / B2067 Otterpool Lane
2	Aldington Road / Stone Street
3	Aldington Road / Lympne Hill
4	A20 Ashford Road / B2067 Otterpool Lane
5	A20 Ashford Road / Swan Lane
6	A20 Ashford Road / Stone Street / Hythe Road
7	A20 roundabout
8	M20 / A20 / B2068
9	A20 Ashford Road / Sandling Road
10	A260 Canterbury Road / Alkham Valley Road
11	White Horse Hill / A20 EB slips / A260 / A260 Spitfire Way
12	A20 WB slips / Alkham Valley Road
	M20 WB off slip / A259 Churchill Avenue / A2034 Cherry Garden
13	Avenue / M20 WB on slip / A20 Castle Hill Bridge
14	Eurotunnel EB slip road (Eurotunnel entry flow)
15	Eurotunnel WB slip road (Eurotunnel exit flow)
16	A20 Cheriton Interchange / B2064 Cheriton High Street
17	M20 J12
	Classified link counts
1	A20 Ashford rd (Cheriton It)
2	A20 (N of Sadling) E
3	A20 (N of Sadling) W
4	Stone Street N
5	Stone Street S
6	Aldington Road W
7	Aldington Road E
8	B2067 Aldington Road W
9	B2067 Aldington Road E
10	A20 Barron Hill N
11	A20 Barron Hill S
12	A20 Ashford rd (W Sellindge)
13	Hythe Road W
14	Hythe Road E
15	M20 J13 EB
16	M20 J13 WB
17	B2064 Cheriton App N
18	B2064 Cheriton App S
19	M20 (W OF J11)
20	M20 (N of Sandling)

Vehicle Traffic Survey Data Provided by Corinthian Mountfield Ltd

	Classified link counts
1	Nackington Road
2	Old Dover Road

APPENDIX C Vehicle Traffic Survey Data Collected July 2017

M20 J10- signalised roundabout- full OD (including underpass)
Ashford Rd (A20)/ Stone Hill- priority- turning count
Ashford Rd (A20)/ Station Rd/ Church Rd- priority- turning counts
Hythe Rd (A20)/ Meersham- priority- turning counts
Hythe Rd (A20)/ The Street- priority- turning counts (2 junctions A and B)
A20 Ashford Rd/ A261 Hythe Rd/Stone St- priority- turning counts
A261 London Rd/ Barrak Hill- priority- turning counts
A259/ Dymchurch Rd/ Military Rd gyratory- signalised- full OD
A259 Prospect Rd/ A259 Seabrook Rd/ Station Rd/ High St- priority roundabout- full OD
A20 Ashford Rd/ A20 J11 offslip- priority- turning counts
M20 J11A- priority full OD required including all on/ offslips and M20 overpass
M20 J12- priority full OD required including all on/ offslips and M20 overpass
M20 J13- priority full OD required including all on/ offslips and M20 overpass
A20 Ashford Rd/ Stone Street- priority- turning counts
M20 J9- signalised full OD including all on/ offslips and M20 overpass
B2064 Cheriton High street / B2063 Risborough Lane – priority – turning counts
B2064 Cheriton High street / A2034 Cherry Garden avenue – priority – turning counts
A259 Prospect Road / Stade Street – priority – turning counts

Otterpool Park Transport Assessment Scoping Report

APPENDIX D ANPR Data Collected July 2017

ANPR data collection locations marked as

Otterpool Park Transport Assessment Scoping Report

Otterpool Park Transport Assessment Scoping Report

Otterpool Park Transport Assessment Scoping Report APPENDIX E

Local Footpaths and Bridleways

Otterpool Park Transport Assessment Scoping Report APPENDIX F

Extent of VISUM model

Otterpool Park Transport Assessment Scoping Report Extent of VISSIM model

Arcadis Consulting (UK) Limited

Arcadis House 34 York Way London N1 9AB United Kingdom

T: +44 (0)20 7812 2000

arcadis.com

APPENDIX B Policy Review Note

Transport Policy and Guidance

Introduction

This note provides a summary of the policy and legislation which provides the context for the Otterpool Park development.

1. National Policy

National Planning Policy Framework, 2021

- 1.1.1. The NPPF sets out the Government's planning policies for England and how these are expected to be applied. The NPPF provides a framework within which locally-prepared plans for housing and other development can be produced.
- 1.1.2. Paragraph 104 sets out the transport issues which should be addressed within Development Plans and decisions so that:
 - "The potential impacts of development on transport networks can be addressed;
 - Opportunities from existing or proposed transport infrastructure, and changing transport technology and usage, are realised for example in relation to the scale, location or density of development that can be accommodated;
 - Opportunities to promote walking, cycling and public transport use are identified and pursued;
 - The environmental impacts of traffic and transport infrastructure can be identified, assessed and taken into account including appropriate opportunities for avoiding and mitigating any adverse effects, and for net environmental gains; and
 - Patterns of movement, streets, parking and other transport considerations are integral to the design of schemes and contribute to making high quality places".
- 1.1.3. Paragraph 105 of Chapter 9 'Promoting sustainable transport' states:

"Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions and improve air quality and public health".

- 1.1.4. Whilst considering sites for specific development proposals, paragraph 110 outlines that it should be ensured that:
 - "Appropriate opportunities to promote sustainable transport modes can be or have been – taken up, given the type of development and its location;
 - Safe and suitable access to the site can be achieved for all users; and
 - Any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree".
- 1.1.5. Paragraph 111 states that:

"Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network would be severe".

- 1.1.6. Within this context Paragraph 112 finds that applications for development should:
 - "Give priority first to pedestrian and cycle movements, both within the scheme and with neighbouring areas; and second – so far as possible – to facilitating access to high quality public transport, with layouts that maximise the catchment area for bus or other public transport services, and appropriate facilities that encourage public transport use;

- Address the needs of people with disabilities and reduced mobility in relation to all modes of transport;
- Create places that are safe, secure and attractive which minimise the scope for conflicts between pedestrians, cyclists and vehicles, avoid unnecessary street clutter, and respond to local character and design standards;
- Allow for the efficient delivery of goods, and access by service and emergency vehicles; and
- Be designed to enable charging of plug-in and other ultra-low emission vehicles in safe, accessible and convenient locations".
- 1.1.7. Paragraph 113 sets out that:

"All developments that will generate significant amounts of movement should be required to provide a travel plan, and the application should be supported by a transport statement or transport assessment so that the likely impacts of the proposal can be assessed".

1.1.8. The NPPF defines a Transport Assessment as:

"A comprehensive and systematic process that sets out transport issues relating to a proposed development. It identifies measures required to improve accessibility and safety for all modes of travel, particularly for alternatives to the car such as walking, cycling and public transport, and measures that will be needed deal with the anticipated transport impacts of the development".

1.1.9. The NPPF defines a Travel Plan as:

"A long-term management strategy for an organisation or site that seeks to deliver sustainable transport objectives and is regularly reviewed".

1.1.10. The relevant national guidelines on Transport Assessments and Travel Plans is provided in Section 2.5.

The Strategic Road Network and the Delivery of Sustainable Development – Department for Transport Circular 02/13

- 1.1.11. The Department for Transport (DfT) Circular explains how the Highways Agency (now National Highways) will participate in all stages of the planning process with Government Offices, regional and local planning authorities, local highway/transport authorities, public transport providers and developers to ensure national and regional aims and objectives can be aligned and met.
- 1.1.12. The Circular sets out that proposals should only be prevented or refused on transport grounds where the residual cumulative impacts of development are severe.
- 1.1.13. It is identified that a robust travel plan that promotes use of sustainable modes is an effective means of managing the impact of development on the road network and reducing the need for major transport infrastructure. National Highways expects the promoters of development to put forward initiatives that manage down the traffic impact of proposals to support the promotion of sustainable transport and the development of accessible sites.
- 1.1.14. Further guidance on engagement with National Highways on planning matters is contained in the document 'The strategic road network: Planning for the Future', published in September 2015.

Decarbonising Transport, Department for Transport, 2021

- 1.1.15. The DfT published this document in July 2021 which sets out the UK Government's commitments and actions needed to decarbonise the entire transport system in the UK.
- 1.1.16. This document includes the pathway to net zero transport in the UK and includes commitments towards the following:
 - Increasing walking and cycling;

- Delivering decarbonisation through places;
- Future transport more choice better efficiency.

2. Regional Policy

Kent Local Transport Plan 4: Delivering Growth without Gridlock 2016-2031, 2016

- 2.1.1. The Kent Local Transport Plan (LTP) sets out how the County will achieve its transport vision over the coming years, bringing together transport policies and local and nationally significant schemes.
- 2.1.2. Kent's transport policies identify a series of improvements (strategic, countywide and local) to increase the overall capacity of transport networks and systems, enabling them to accommodate the additional trips generated by development.
- 2.1.3. Relevant to this development the LTP states:

"There is substantial future housing growth in the district, including the proposed Otterpool Park garden town, which will require considerable infrastructure investment to support this new town, including upgrading Westenhanger Station".

- 2.1.4. Transport priorities identified for Folkestone & Hythe relevant to the development are:
 - Upgrading of Westenhanger Rail Station;
 - Upgrades to Junction 11 of the M20; and
 - Newingreen junction highway improvements.

Kent Rail Strategy, 2021

- 2.1.5. The Rail Strategy sets out how Kent will influence train services for their passenger network over the next 10 years. It aligns with both local and national transport policies, which recognise rail as a key part of Kent's transport priorities.
- 2.1.6. This document presents a proposed train service plan that includes High Speed service at Westenhanger Station to meet the increased demand which will arise from the Otterpool Park Development.

3. Local Policy

Folkestone & Hythe District Council Transport Strategy, 2011

- 3.1.1. The Transport Strategy published January 2011, provided a robust evidence base which informed the Core Strategy document. The role of the Transport Strategy has been to inform the District Council of the transport related issues and opportunities predicted to result from the delivery of the Core Strategy, identifying appropriate transport measures, where necessary.
- 3.1.2. The strategy considers both transport matters which relate to the existing district area, as well as those relating to the potential Strategic Site allocations which have been made for future development.

Walking

- 3.1.3. Four initial options were suggested for walking:
 - Improvements to road crossing points;
 - Improvements to signage and clutter reductions;
 - Completions of selected links; and
 - Enhancements of the environment of the town centres.

Cycling

- 3.1.4. Six initial options were suggested for cycling:
 - Creation of a comprehensive District wide cycle network;

- Enhancement of road crossing facilities;
- Enhancement of signage;
- Promotion of parking facilities at destinations;
- Consideration of cycle hire; and
- Promotion of safety awareness.

Parking

- 3.1.5. Folkestone & Hythe District Council, working with Kent County Council as the highway authority for the district, provide and manage parking across Folkestone & Hythe. Key measures identified by the parking strategy included:
 - Promotion of Workplace Travel Plans for existing sites;
 - Promotion of balanced parking provision at new developments;
 - Integration of management of on and off-street parking;
 - Review of management of car parking at Westenhanger Rail station including formalising parking at the station, reviewing parking management on Stone Street, and promoting access to station in connection with three local Core Strategy sites; and
 - Promotion of 'visible' parking provision for use by tourists.
- 3.1.6. In relation to potential strategic development sites within the district, it is stated as necessary for the respective applicant team to prepare detailed Transport Assessments and Travel Plans, to be reviewed by Folkestone & Hythe District Council as the planning authority, Kent County Council as the highway authority, as well as National Highways.
- 3.1.7. As potential strategic development sites come forward, it will be necessary for the respective applicant team prepare a detailed Transport Assessment and Travel Plan. Subsequently the strategy recommends:

"...that in parallel to the Transport Assessments being undertaken, site Travel Plans are also prepared. These documents should seek to set sustainable travel targets for the developments covering the delivery and early occupation of the site (usually a minimum of five years from first occupation)".

Local Plan Written Statement – Appendix 6: Kent County Council Vehicle Parking Standards, 2009

3.1.8. Appendix 6, of the full Local Plan Review written statement sets out the parking standards which were saved under the March 2009 Direction from the Secretary of State following the adoption of the Core Strategy Local Plan 2013. Policy TR12 states that:

"New development, redevelopment or a change of use will only be permitted if it makes provision for off street parking on or near the site in accordance with the current maximum vehicle parking standards, as set out in Appendix 6. These standards may be varied where:

- a) The location is well served by public transport and there would be no adverse effect on road safety or traffic management.
- b) This would allow development which would preserve or enhance the character or appearance of a conservation area or assist the re-use of a building of architectural or historic interest.
- c) A commuted sum payment is made for improvements to or measures to assist the use of public transport, cycling or walking".
- 3.1.9. The District Planning Authority will apply the Kent 2003 standards, as set out in Appendix 6, to the Otterpool Park development.

Residential Parking Standards

3.1.10. The current parking provision for residential uses is based on the more recent Kent County Council Interim Guidance Note 3 (November 2008) on parking, giving indicative minimum and maximum residential parking guidelines depending on location. The policy for residential uses is based on categories of places from city/ town centre through to suburban edge/ village/ rural. Residential parking standards (Table 13.1 of the Draft Submission) for residential provision is identified in Table 1.

	Location				
	City / Town Centre	City / Town Centre Edge of Centre		Suburban Edge / Village / Rural	
On-street Controls	On-street controls preventing all (or all long stay) parking	On-street controls, residents' scheme and/or existing saturation ⁽³⁾	No, or very limited, on-street controls	No on-street controls, but possibly a tight street layout	
Nature of Guidance	Maximum (1)	Maximum	Minimum (6)	Minimum (6)	
1 and 2 bed flats	1 space per unit	1 space per unit	1 space per unit	1 space per unit	
Form	Controlled (2)	Not allocated	Not allocated	Not allocated	
1 and 2 bed houses	1 space per unit	1 space per unit	1 space per unit	1.5 spaces per unit	
Form	Controlled (2)	Allocation possible	Allocation possible	Allocation of one space per unit possible	
3 bed houses	1 space per unit	1 space per unit	1.5 spaces per unit	2 independently accessible spaces per unit	
Form	Controlled (2)	Allocation possible	Allocation of one space per unit possible	Allocation of one or both spaces possible	
4+ bed houses	1 space per unit	1.5 spaces per unit	2 independently accessible spaces per unit	2 independently accessible spaces per unit	
Form	Controlled (2)	Allocation of one space per unit possible	Allocation of both spaces possible ⁽⁷⁾	Allocation of both spaces possible ⁽⁷⁾	

(1) Reduced, or even nil provision is encouraged in support of demand management and the most efficient use of land.

(2) Parking/garage courts, probably with controlled entry.

(3) Reduced, or even nil provision acceptable for rented properties, subject to effective tenancy controls.

(4) Open car ports or car barns acceptable at all locations, subject to good design.

(5) May be reduced where main provision is not allocated. Not always needed for flats.

(6) Lower provision may be considered if vehicular trip rate constraints are to be applied in connection with a binding and enforceable Travel Plan.

(7) Best provided side by side, or in another independently accessible form. Tandem parking arrangements are often under-utilised.

Source: Kent County Council Interim Guidance Note 3 (Kent County Council, 2008)

- 3.1.11. The current parking standards for cycles will be provided in the development in accordance with the Local Plan, as presented in Table 2. These are based on Kent County Council's Supplementary Policy Guidance SPG4 which seeks to encourage the use of bicycles by:
 - Making them more easily accessible to users;
 - Protecting them from theft; and
 - Ensuring parking facilities are well-integrated into the design of the development.
- 3.1.12. A high standard of security is recommended to avoid the need to rake bicycles a long way into a building.

Table 2 Residential Cycle Parking Standards

Land Use	Cycle Parking Standard		
Individual residential developments	1 space per bedroom		
Sheltered accommodation	1 space per 5 units		

Core Strategy Review 2022

- 3.1.13. The Core Strategy Review has been published for consultation under Regulation 19 of the Planning and Compulsory Purchase Act 2004 (Ref 16-9). In March 2020 the Core Strategy Review was submitted to the Secretary of State for Communities and Local Government for examination by a planning inspector. The purpose of the document is to allocate sufficient land to meet the identified development needs of the district for the period up to 2037.
- 3.1.14. This draft follows the previous public consultation on the 'Preferred Options' stage in March 2018. It is an update of the adopted Core Strategy Local Plan (2013) and continues to include policies for strategic development sites. Proposed policies include the provision for a garden settlement within the North Downs character area, comprising the Otterpool Park development.
- 3.1.15. Proposed policy SS1 District Spatial Strategy states:

"Housing will be delivered through a new sustainable, landscape-led settlement, with supporting town centre and community uses, based on garden town principles in the North Downs Area, in accordance with policies SS6-SS9. The garden town will maximise opportunities arising from the location, access to London and continental Europe and strategic infrastructure. Housing and supporting community uses will also be delivered through growth in Sellindge (policy CSD9)"

- 3.1.16. In addition, Proposed Policy SS6 finds that the Development would present the major opportunity to secure a high-speed rail service between Westenhanger and London St Pancras. The council is pursuing this with train operating companies, infrastructure providers and stakeholders. A transport hub could potentially be provided at the existing Westenhanger station, allowing easy transfer between walking, cycling, bus and train journeys.
- 3.1.17. The railway station upgrade and hub will potentially deliver:
 - Lengthening of the existing platforms;
 - New and refurbished station buildings with improved customer facilities;
 - A new footbridge between platforms; and
 - Car parking to meet the needs of the new town and nearby villages.
- 3.1.18. Policy SS7 outlines the place shaping principles for sustainable access and movement for the new Otterpool Park settlement:
 - "The development shall be underpinned by a movement strategy which prioritises walking, cycling and access to public transport and demonstrates how this priority

has informed the design of the new settlement. All homes shall be within 800 metres/10 minutes' walk of a local neighbourhood centre with an aspiration that all homes are within 400 metres/5 minutes' walk of such facilities;

- Development shall incorporate smart infrastructure to provide real-time and mobileenabled public transport information in accordance with smart town principles (Policy SS9 (2));
- A permeable network of tree-lined streets, lanes, pathways, bridleways, cycleways and spaces will be created that provides connections between neighbourhoods, the town centre, employment opportunities and public transport facilities. Footpaths, cycleways and bridleways should link to existing public rights of way, nearby villages and the wider countryside, including the North Downs Way and the SUSTRANS national cycle route network, taking account of the findings of the access strategy (Policy SS7 (1)) on sensitive habitats;
- Road infrastructure should be designed for a low speed environment, with priority given to pedestrians and cyclists through the use of shared space in ultra-low speed environments and dedicated cycle routes and separate pedestrian walkways where appropriate. The use of grade separations, roundabouts, highway furniture and highway signage should be minimised;
- A parking strategy shall be developed that balances the necessity of car ownership with the need to avoid car parking that dominates the street scene to the detriment of local amenity. The parking strategy shall deliver well-designed and accessiblylocated cycle parking facilities within the town and neighbourhood centres, at Westenhanger Station and transport hub, as well as at employment developments;
- Westenhanger Station shall be upgraded at the earliest opportunity to provide a highspeed service ready integrated transport hub, in partnership with Network Rail, the rail operator and Kent County Council, which gives priority to pedestrians, cyclists, bus and train users. The council will continue to work with Network Rail to introduce high-speed rail services from Westenhanger to central London, subject to discussions with stakeholders; and
- The existing bus network that serves the surrounding towns and villages will be upgraded and new services provided as an integral element of the transport hub and settlement. All new homes shall be within a five-minute walk of a bus stop."
- 3.1.19. Policy SS9 sets out the infrastructure, delivery and management requirements of a new garden settlement:
 - A smart town New dwellings shall provide adaptable space suitable for home working and other buildings (including shops, cafes, commercial buildings and community facilities) shall provide facilities for working on the move; and
 - Long-term management and governance Infrastructure, the urban realm, open spaces including informal pedestrian and cycle pathways, and facilities shall be designed to take into account long-term management and maintenance requirements.

Places and Policies Local Plan, Adopted 2020

- 3.1.20. The Places and Policies Local Plan was adopted in September 2020 to support the delivery of the Core Strategy and sets out the preferred options ready for consultation.
- 3.1.21. The Places and Policies Local Plan identifies more than 50 sites across the district where the district's future needs in terms of housing, employment, community use and leisure could be met.
- 3.1.22. The Places and Policies Local Plan has two functions:
 - "To allocate enough land for future development to meet the requirements set out in the Core Strategy for residential, employment, community and other needs"; and

- "To provide development management policies that will be used to assess planning applications and guide future development."
- 3.1.23. The Places and Policies Local Plan contains transport policies in Chapter 13 for:
 - The street hierarchy and site layout.
 - Parking standards for residential and non-residential and commercial developments.
 - Residential garages.
 - Parking for Heavy Goods Vehicles (HGVs).
 - Cycle parking standards.
- 3.1.24. The document re-iterates the expectations of new development to prioritise walking, cycling and public transport modes before private cars. Policy T1 Street Hierarchy and Site Layout states that a safe environment for all street users is created, meeting the needs of all and not allowing vehicles to dominate.

Electric Vehicle Parking Requirement

- 3.1.25. Policy T2 also sets out the requirement for electric vehicle charging points. Residential applications must demonstrate that *"A charging point for electric vehicles is provided at a ratio of 1 per dwelling as far as is reasonably practicable"*.
- 3.1.26. Whilst, under non-residential and commercial proposals the requirement includes "A minimum of 10 per cent of spaces for active and 10 per cent passive Electric Vehicle Charging points".
- 3.1.27. It also identifies potential opportunities for new development to make use of street lighting columns to permit on-street electric vehicle charging.

4. Guidance

Travel Plans, Transport Assessment and Statements, 2014

- 4.1.1. A set of National Planning Practice Guidance (NPPG) has been published to inform how the principle of the NPPF should be practiced. Those that specifically relate to transport matters are:
 - Travel Plans, Transport Assessments and Statements in Decision-Taking (March 2014); and
 - Transport Evidence Bases in Plan Making and Decision Taking (October 2014).
- 4.1.2. These guidelines provide a common approach which are aimed at ensuring that all relevant issues have been addressed within an assessment. This Transport Assessment adopts the national guidelines and approaches where possible, taking account of the specific nature of the development.
- 4.1.3. Kent County Council guidelines for the preparation of Transport Assessments for development¹ have been archived along with the national guidelines² produced by the DfT. Transport Assessment guidance is now incorporated into the NPPF.

A Charter for Otterpool Park, 2017

- 4.1.4. Although not planning policy, Folkestone & Hythe District Council has produced a Charter setting out its aspirations for Otterpool Park (2017). The Charter included principles focusing on creating a place that is environmentally, socially and economically sustainable.
- 4.1.5. In relation to access and movement, the Charter suggests that Otterpool Park will aspire to comprise the following four policies set out in the Core Strategy Local Plan Review (2018):
 - SS6: New Garden Settlement Development Requirements;
 - SS7: New Garden Settlement Place Shaping Principles;

¹ Guidance on Transport Assessments and Travel Plans (Kent County Council, October 2008)

² Guidance on Transport Assessment (DfT, 2007)

- SS8: New Garden Settlement Sustainability and Healthy New Town Principles; and
- SS9: New Garden Settlement Infrastructure, Delivery and Management.
- 4.1.6. In order to prioritise walking, cycling and sustainable transport the Charter states that:

"a travel plan shall be prepared that has walking, cycling and access to public transport as a priority in the layout and design of the new settlement, with challenging targets set for non-car use as a percentage of all journeys".

Other Guidance

- 4.1.7. Where appropriate a range of other technical reference documents have been consulted in developing the assessment and mitigation proposals. These include:
 - The Kent Design Guide (Kent Design Initiative, December 2005), adopted by Folkestone and Hythe District Council in 2007
 - Kent County Council Interim Guidance Notes 1, 2 and 3 (2008)
 - The Design Manual for Roads and Bridges, (DfT, various dates)
 - The Manual for Streets, (Department for Communities and Local Government (DCLG) / DfT, 2007)
 - The Manual for Streets 2, CIHT, 2010 a companion guide to Manual for Streets (DCLG / DfT, 2010)
 - Travel Plan Guidelines, (DfT, various dates).

APPENDIX C Canterbury Model Validation Report

OTTERPOOL PARK

Operational Modelling Validation Report: Canterbury

SEPTEMBER 2018

CONTACTS

JONATHAN GUNASEKERA Transport Modeller

dd +4420138829143 e jonathan.gunasekera@arcadis.com Arcadis.

34 York Way London N1 9AB

T: +

CONTENTS

1	INTRODUCTION1
1.1	Background1
1.2	Purpose of this Note1
1.3	Study Area2
1.4	Road Network3
1.4.1	Old Dover Road4
1.4.2	St Lawrence Road4
1.4.3	The Drive4
1.4.4	Nackington Road4
2	BASELINE CONDITIONS
2.1	Introduction5
2.2	2014 Traffic Surveys5
2.3	2014 Base Traffic Model Results9
2.4	2018 Baseline Conditions11
3	SUMMARY AND CONCLUSION
3.1	Summary18
3.2	Conclusion

TABLES

Table 1	Junction Name and Type	2		
Table 2	2014 AM Peak Hour Origin -Destination Matrix (PCUs)	6		
Table 3 201	4 PM Peak Hour Origin -Destination Matrix (PCUs)	7		
Table 4	Observed Queue Results	9		
Table 5	2014 AM Base Traffic Model and Observed Results 1	0		
Table 6	2014 PM Base Traffic Model and Observed Results 1	0		
Table 7 Comparison between 2014 and 2018 traffic flow data				

APPENDICES

APPENDIX A

Mountfield Park Raw Traffic Data

APPENDIX B

Signal Configuration Plans

APPENDIX C

2018 Base LinSig Model Outputs

1 Introduction

1.1 Background

Arcadis Consulting (UK) Limited was appointed to develop a masterplan and planning submission in respect of the proposed development called Otterpool Park.

In December 2016, a Feasibility and Capacity Study undertaken as part of Stage 1 of the masterplanning process included a high-level assessment of the capacity of the M20 Junction 11, investigating the existing operation of the junction and testing a number of development scenarios using trip forecasts from a high-level trip generation calculation exercise based on vehicle trip rates provided by Shepway District Council.

Following the initial high-level capacity assessment in January 2017, a Trip Model was developed to calculate the number of trips generated by the site, the mode of travel in which the trips will occur and the spatial distribution of the trips. The masterplan has been developed further and a planning application is due to be submitted in 2018.

Scoping discussions with Kent County Council (KCC), Folkstone & Hythe District Council (F&HDC) and Highways England to agree the transport requirements for the planning application were conducted between May 2017 and June 2018. A Transport Assessment scoping note1 containing the proposed modelling study area was issued in August 2017. Technical notes describing the proposed trip generation2 and distribution3 method were submitted in May 2017 and July 2017 respectively. These reports will be updated prior to planning application submission.

In June 2016, Canterbury City Council provided scoping opinion to F&HDC requesting further analysis of the effect of the Otterpool Park proposals in Canterbury. Following further scoping discussion with KCC, it was agreed that traffic modelling of the following two signalised junctions would be required:

- a) Old Dover Road / The Drive / St Lawrence Road; and
- b) Old Dover Road / Nackington Road.

1.2 Purpose of this Note

The purpose of this note is to provide a high-level assessment of the existing conditions at the site and develop a suitable 2018 base model for assessing the potential impacts of Otterpool Park development traffic on the road network at this location.

A calibrated and validated base model for the Old Dover Road/ The Drive junction to Old Dover Road / Nackington Road junction was developed as part of the 2014 Mountfield Park Transport Assessment and has been used as the basis for this assessment. This note outlines how a new 2018 baseline year was established using the traffic conditions and base junction modelling undertaken in 2014 and provides an assessment of 2018 traffic conditions and flows.

¹ Otterpool Park Garden Settlement Transport Assessment Scoping Report (August 2017)

² Otterpool Park Garden Settlement Trip Generation Calculation Method Technical Note (May 2017)

³ Otterpool Park Garden Settlement Method for the Distribution of External Vehicle Trips (July 2017)

1.3 Study Area

The Old Dover Road/The Drive junction is situated next to Canterbury Cricket Club (a mile south-east of Canterbury city). There is a large proportion of residential housing along with shops and services supplying the local area. The locations of the two junctions are shown in Figure 1. Table 1 presents the type of each junction.

Figure 1 Site Location

Table 1Junction Name and Type

No.	Junction	Туре
Junction 1	Old Dover Road / The Drive / St Lawrence Road	Signalised Crossroads
Junction 2	Old Dover / Nackington Road	Signalised T Junction

1.4 Road Network

The Old Dover Road / The Drive / St Lawrence Road junction is a four-arm signalised crossroad that is linked to the three arm signalised Old Dover Road / Nackington Road T-junction via Old Dover Road. The road network shown Figure 2.

Figure 2 Road Network

1.4.1 Old Dover Road

Old Dover Road runs from the Rhoadus Town/Upper Bridge Street roundabout on the south east of Canterbury Town Centre to the Old Gate Inn roundabout with New Dover Road to the south east of Canterbury. It is approximately 2km long and operates as a mixture of UAP3 and UAP4 link road with traffic calming between the Old Gate Inn roundabout to the south east and the junction with Nackington Road.

In the vicinity of the study site, Old Dover Road runs northwest – southeast and is the connecting link arm between the Old Dover Road / The Drive / St Lawrence Road junction and the Old Dover Road / Nackington Road junction. The Old Dover Road northwest approach to the Old Dover Road / The Drive junction has a 3.4m single lane with an advanced stopline for cyclists. Similarly, the southeast approach to the Old Dover Road / The Old Dover Road / The Drive junction has a 3.4m single lane with an advanced stopline for cyclists. Similarly, the southeast approach to the Old Dover Road / The Drive junction is a single lane approach with an advanced stopline for cyclists but with an approximate lane width of 3m. A straight-over signalised pedestrian crossing operates on the southeast approach with a crossing distance of approximately 10m.

The 170m section of Old Dover Road between the Old Dover Road/ The Drive / St Lawrence Road and Old Dover Road / Nackington Road junctions is slightly wider with a two-way carriageway width of approximately 9m. This is to accommodate on street parking on the northern side of the carriageway. There are also bus stops in both directions on Old Dover Road between the two junctions.

Southbound on approach to the Old Dover Road / Nackington Road junction, Old Dover Road flares to two lanes. This provides a 60m right-turn lane into Nackington Road that operates on an indicative right-turn signal. South of the Nackington Road junction there are traffic calming measures and the centre line on Old Dover Road is removed.

1.4.2 St Lawrence Road

St Lawrence Road runs between New Dover and Old Dover Road in a north east – south west direction. It is approximately 162m long with double yellow lines on both sides of the carriageway throughout its length except for a small amount of permit holder parking bays on the northern side of the carriageway. The carriageway is approximately 6m wide with single 3m lanes running in each direction. It has a single lane approach to the Old Dover Road junction with an advanced stopline for cyclists.

1.4.3 The Drive

The Drive is a narrow access road to residential cul de sacs and the Kent County Cricket Club. It has a single lane approach to the Old Dover Road / The Drive / St Lawrence Road junction, approximately 2.2m wide, with an advanced stopline for cyclists.

1.4.4 Nackington Road

Nackington Road is a key link road connecting Canterbury with villages and towns to the south. It is a two-way single lane carriageway with approximately 3m wide lanes. On approach to the junction with Old Dover Road it widens to two lanes to provide a short 30m right-turn flare with an advanced stopline for cyclists.

2 Baseline Conditions

2.1 Introduction

As part of the Mountfield Park planning application a technical note detailing the 2014 baseline traffic survey results was included. The raw traffic data collected for the site is provided as part of the appendices and includes data for both the Old Dover Road / The Drive / St Lawrence Road and Old Dover / Nackington Road junctions.

It was agreed with the KCC Highways Team that 2014 survey data collected as part of the Mountfield Park Transport Assessment (TA) could be used for the Otterpool Park assessment provided that they are validated against 2018 count data. In this Chapter, we present and compare the 2014 and 2018 traffic flow data.

2.2 2014 Traffic Surveys

The raw survey data from the Mountfield Park TA included classified turning counts for the Old Dover Road / The Drive / St Lawrence Road and Old Dover / Nackington Road junctions (see Appendix A). This data was extracted and factored to obtain turning volumes in Passenger Car Units (PCUs) which is approximately a single car length of 5.75m. These turning counts were used as the 2014 base traffic flow demands. The AM and PM peak hours were 08:00 – 0900 hours and 17:00 – 18:00 hours respectively. Table 2 and Flows in red indicate key movements.

Table 3 present the traffic flows in PCUs on each of the arms during the AM peak and PM peak hours.

Table 2 2014 AM Peak Hour Origin -Destination Matrix (PCUs)

	Travelling To					
	A –	B –	C –	D –	E-	Total
Approach From	St Lawrence Road	Old Dover Road South	Nackington Road	The Drive	Old Dover Road North	
A –						
St Lawrence Road	0	40	102	26	122	290
В —						
Old Dover Road South	43	0	71	6	162	282
C – Nackington	102	102	0	16	316	536
Road	102	102	Ū		010	000
D – The Drive	15	9	22	0	32	78
E – Old Dover Road North	53	70	180	25	0	328
Total	213	221	375	73	632	1514

Flows in red indicate key movements.

	Travelling To					
Approach From	A – St Lawrence Road	B – Old Dover Road South	C – Nackington Road	D – The Drive	E – Old Dover Road North	Total
A – St Lawrence Road	0	62	104	14	25	205
B – Old Dover Road South	36	0	105	20	92	253
C – Nackington Road	56	100	0	33	134	323
D – The Drive	34	21	33	0	40	128
E – Old Dover Road North	68	155	271	46	0	540
Total	194	338	513	113	291	1449

Table 3 2014 PM Peak Hour Origin -Destination Matrix (PCUs)

Flows in red indicate key movements.

Figure 3 provides a visual representation of the predominant traffic flows recorded at the junctions. It shows that the predominant traffic flows were as follows:

- a) Old Dover Road North to Nackington Road AM and PM peak hours;
- b) Nackington Road to Old Dover Road North AM and PM peak hours;
- c) Old Dover Road South to Old Dover Road North AM peak hour; and
- d) Old Dover Road North to Old Dover Road South PM peak hour.

The key movements indicate that there is a tidal flow pattern along Old Dover Road with heavier northbound movements in the AM peak hour (towards Canterbury) and southbound movements in the PM peak hour. Movements to and from Nackington Road and Old Dover North were heavy in both the AM and PM peak hours.
Otterpool Park Operational Modelling Validation Report

Figure 3 Key Traffic Flow Movements

As part of the traffic surveys, 15-minute queue data was also collected at the two junctions. The observed data is presented in Table 4. The data indicates that the longest queues average and maximum queues in the AM peak hour formed on Nackington Road. Long queues also formed on the Old Dover South and North approaches. In the PM peak hour, the longest queues formed on Old Dover North, Nackington Drive and The Drive.

Table 4 Observed Queue Results

			Queue	Lengths	
Ap	proach	AM Pe	ak Hour	PM pea	ık Hour
		Average	Maximum	Average	Maximum
Α	St Lawrence Road	5	5	4	5
В	Old Dover Road South	9	10	6	8
С	Nackington Road	14	17	11	15
D	The Drive	3	4	9	10
E	Old Dover Road North	9	14	13	16

2.3 2014 Base Traffic Model Results

A calibrated and validated base model for the Old Dover Road / The Drive / St Lawrence Road junction to Old Dover / Nackington Road junction was developed as part of the Mountfield Park TA. Using the base LinSig model outputs from the TA a 2014 base model for the Old Dover Road / The Drive / St Lawrence Road and Old Dover / Nackington Road junctions was developed for the Otterpool Park assessment. This model retained the network layout, saturation flows and signal coordination which had previously been approved. Signal timing sheets, signal layout drawings, and any other supplementary signal data provided by the Local Authority were checked and used to input the phases and associated phase delays, phase minimums and intergreen matrices. These are included in Appendix B. It has been assumed that since no network changes have been implemented at this location since 2014 and therefore that the model provides a reasonable representation of existing network conditions. Table 5 and Table 6 provide a comparison of the base model Degree of Saturation (DoS) and Mean Maximum Queue length (MMQ) results and observed average and maximum queue lengths. Full model outputs are provided in Appendix C.

The base model results indicate that the network is fully saturated, particularly in the AM peak hour. The model indicates that four approaches, St Lawrence Road, Old Dover Road South, Nackington Road and Old Dover Road North are operating above practical capacity in the 2014 baseline conditions all with a DoS above 90%. The model also predicts long sustained queues on these approaches, which is in line with the observed average and maximum queue data. However, it should be noted that the observed average and maximum queue lengths on St Lawrence Road were lower than those predicted in the base LinSig model. A comparison with typical peak hour traffic using the Google Traffic application on Google Maps, shown in Figure 4, indicates that the base model is consistent with current typical peak hour traffic conditions. The entire network is shown in amber with red on the St Lawrence Road, Old Dover Road South and Nackington Road approaches. This indicates heavy congestion on the surrounding road network and the approaches identified in the base LinSig model.

The base model results for the PM peak hour also indicate that the network is operating at capacity, with one approach, Old Dover North, predicted to be operating above practical capacity with a DoS of 100.7%. The modelled MMQ for each of the approaches are consistent with those observed on site with the longest queues forming on Old Dover North.

Table 5	2014 AM Base	Traffic Model	l and Observed	Results
---------	--------------	---------------	----------------	---------

				AM Peak Hour	
Ap	proach		Modelled	Obser	ved
		DoS (%)	Mean Max Queue (PCU)	Average Queue (Vehicles)	Max Queue (Vehicles)
Α	St Lawrence Road	99	16	5	5
В	Old Dover Road South	64	9	9	11
C	Nackington Road	94	9	14	17
D	The Drive	49	3	3	4
E	Old Dover Road North	95	15	9	14
-	Old Dover Internal Link Northbound	98	27	9	10
-	Old Dover Internal Link Southbound	64	9	7	8

Table 6 2014 PM Base Traffic Model and Observed Results

			l	PM Peak Hour	
Ар	proach		Modelled	Obser	ved
		DoS (%)	Mean Max Queue (PCU)	Average Queue (Vehicles)	Max Queue (Vehicles)
Α	St Lawrence Road	77	8	4	5
В	Old Dover Road South	85	10	6	7
С	Nackington Road	78	6	11	15
D	The Drive	89	7	9	10
E	Old Dover Road North	101	29	13	16
-	Old Dover Internal Link Northbound	82	6	6	8
-	Old Dover Internal Link Southbound	68	6	8	10

Otterpool Park Operational Modelling Validation Report

Figure 4 Google Traffic Typical Traffic conditions: AM Peak Hour

2.4 2018 Baseline Conditions

Since the traffic data used in the 2014 Mountfield Park TA is greater than 3 years old, KCC requested that it should be compared with 2018 traffic count data and adjusted accordingly to establish a new 2018 baseline for the network.

Automated Traffic Count (ATC) data was collected in March 2018 at the locations shown in Figure 5. Whilst only two of the five entrances to the network were covered by the 2018 ATCs, these are considered to the be two critical entrances and exits to the network. The ATC on Old Dover Road captures all of the traffic routing to and from the centre of Canterbury. The ATC on Nackington Road captures strategic traffic from south of Canterbury which is where the proposed Otterpool development is located. The ATCs are close enough to the junctions to assume that there would not be a significant leakage in network traffic and would therefore provide a robust method to assess network traffic growth.

Figure 5 2018 ATC Locations

Figure 6 shows a comparison of the rolling hour traffic flow profiles for each movement for each weekday as well as the weekday average. The data indicates that daily traffic profiles for each movement are consistent across each of the observed weekdays. The traffic flow profiles for Old Dover Road Northbound and Southbound show a tidal movement in the AM and PM peak hours with heavier flows northbound in the AM and southbound in the PM. As the flow profiles across each of the weekdays are similar, the average flow across the weekdays has been used for the purposes of this assessment.

Otterpool Park Operational Modelling Validation Report

Figure 6 2018 ATC Rolling Hour Traffic Flow Profiles (PCUs)

Figure 7 shows the network 'rolling hour' total flow profile for each weekday. These are also consistent across weekdays and indicate the peak hours are still 08:00 - 09:00 and 17:00 - 18:00 for the AM and PM peak hours respectively.

Figure 7 2018 Rolling Hour Network Total Traffic Flow Profiles (PCUs)

This comparison is shown in Table 7.

Table 7 Comparison between 2014 and 2018 traffic flow data

		AM Pea	ak Hour			PM Pea	ık Hour	
Direction	Traffic Fl	ow (PCU)	Flow Di	fference	Traffic FI	ow (PCU)	Flow Di	ference
	2014	2018	Vehicles	%	2014	2018	Vehicles	%
Nackington Road SB	376	340	-36	-9.6%	512	456	-55	-10.8%
Nackington Road NB	535	589	54	10.1%	317	305	-13	-3.9%
Old Dover Road SB	329	288	-41	-12.4%	530	518	-12	-2.3%
Old Dover Road NB	631	591	-41	-6.4%	291	277	-14	-4.8%
Total	1871	1808	-63	-3.4%	1650	1556	-94	-5.7%

The data indicates that there has been little change in traffic flows along Old Dover Road and Nackington Road between 2014 and 2018. The results indicate a net decrease in traffic demand of -3.4% and -5.7% in the AM and PM peak hours respectively.

Although a decrease in traffic demand or volume is not typically expected, it reflects the constraints on the network. The network results in the 2014 base LinSig model indicate that the network is fully saturated and

without network improvements additional traffic would not be able to be accommodated through these junctions. It is therefore a reasonable assumption there has been no growth in peak hour traffic flows at this location as there is not enough capacity on the network to accommodate further growth. There may have been an increase in demand in the shoulder peaks either side of the peak hour, however this does not affect the peak hour growth assumptions.

A review of the available annual count data in the vicinity of the site found that one DfT count point was in close proximity to the site. DfT count point ID 26110, shown in

, is located to the south east of the site. The annual count data for 2012 - 2017 for this location was extracted and is presented Figure 8. The data indicates that there was a reduction in yearly flows between 2014 and 2017. This is consistent with the reduction observed between the 2018 ATC data and 2014 junction turning counts.

Therefore, based upon this assessment it is considered that no network traffic growth should be applied to the 2018 baseline and that the 2014 base model and traffic flows are considered a reasonable representation of the existing conditions at the site. It is also considered the worst-case scenario as the 2014 flows are higher than those recorded in 2018.

3 Summary and Conclusion

3.1 Summary

Arcadis Consulting (UK) Limited was appointed to undertake a traffic modelling assessment of the network surrounding Canterbury Cricket Club. Specifically, the Old Dover Road/ The Drive junction to the B2068 Nackington Road junction.

A calibrated and validated base model for the Nackington Road / Old Dover Road T-Junction to Old Dover Road / The Drive / St Lawrence Road junction was developed as part of the Mountfield Park TA. Using the base LinSig model outputs from the TA a 2014 base model for the junctions was developed. This model retained the network layout, saturation flows and signal coordination which had previously been approved.

The base model results indicate that the network is fully saturated, particularly in the AM peak hour. The model indicates that four approaches, St Lawrence Road, Old Dover Road South, B2068 Nackington Road and Old Dover Road North are operating above practical capacity in the 2014 baseline conditions all with a DoS above 90%.

In order to establish a new 2018 baseline for the network, the 2014 traffic count data was compared with 2018 ATC data. The comparison indicated that there has been little change in traffic flows along Old Dover Road and Nackington Road between 2014 and 2018. The results indicate a net decrease in traffic demand of 3.4% and 5.7% in the AM and PM peak hours respectively.

3.2 Conclusion

Based upon this assessment it is considered that no network traffic growth should be applied to the 2018 baseline and that the 2014 base model and traffic flows are considered a representation of the existing conditions at the site and fit to be used for the Otterpool Park assessment work for the Nackington Road / Old Dover Road and Old Dover Road / The Drive / St Lawrence Road junctions.

Otterpool Park Operational Modelling Validation Report

APPENDIX A Mountfield Park Raw Traffic Data

JUNCTII Old Dover Road (NORTH) / St Lawrence Road

AM

Old Dover Road (NORTH

				Left t	to St	Lawre	nce						Ał	nead	ODR (S)						Rigl	ht Th	e Driv	/e				
TIMI	E	P/CY N	M/C.	CAR	LGV	OGV	ogv e	BUS	TOT/	PCU	P/CY N	И/С `	CAR	LGV	OGV	OGV	BUS	TOT	PCU	P/CY N	Λ/С`	CAR L	_GV (OGV	ogv e	SUS	TOT/	PCU	Total
800 -	815	0	0	3	1	0	0	0	4	4	1	0	58	1	1	1	2	63	67	0	0	7	2	0	0	0	9	9	
815 -	830	0	0	17	0	0	0	0	17	17	5	2	74	2	0	0	1	79	80	0	0	4	2	0	0	0	6	6	
830 -	845	0	0	21	0	0	0	1	22	23	1	0	45	3	0	0	6	54	62	0	0	4	0	0	0	0	4	4	Total
845 -	900	0	0	8	1	0	0	0	9	9	0	0	32	7	2	0	0	41	42	2	0	5	1	0	0	0	6	6.4	TOT/ PCU
Hourly	Total	0	0	49	2	0	0	1	52	53	7	2	209	13	3	1	9	237	250	2	0	20	5	0	0	0	25	25	314 329
St La	awrence				Le	eft								Ah	ead								Rig	ht					
TIMI	E	P/CY N	Л/С .	CAR	LGV	OGV) GV E	BUS	TOT	PCU	P/CY N	И/С`	CAR	LGV	OGV	OGV	BUS	TOT	PCU	P/CY N	Л/С`	CAR L	_GV (OGV	OGV E	SUS	TOT/	PCU	Total
800 -	815	0	1	30	3	1	0	0	35	35	0	0	4	0	0	0	0	4	4	0	0	29	0	0	0	0	29	29	
815 -	830	0	0	35	5	1	0	1	42	44	1	0	11	1	0	0	0	12	12	2	0	30	0	0	0	0	30	30	
830 -	845	0	0	32	2	1	0	0	35	36	0	0	3	0	0	0	0	3	3	1	0	28	0	0	0	0	28	28	
845 -	900	1	0	22	1	0	0	2	25	28	0	0	5	2	0	0	0	7	7	0	0	34	0	0	0	0	34	34	TOT/ PCU ⁻
Hourly	Total	1	1	119	11	3	0	3	137	142	1	0	23	3	0	0	0	26	26	3	0	121	0	0	0	0	121	122	284 289
Old	Dover F				Le	eft								Ah	ead								Rig	ht					
TIMI	E	P/CY N	Л/С .	CAR	LGV	OGV	OGV E	BUS	TOT	PCU	P/CY N	И/С`	CAR	LGV	OGV	OGV	BUS	TOT	PCU	P/CY N	Л/С`	CAR L	_GV (OGV	OGV E	SUS	TOT	PCU	Total
800 -	815	0	0	8	1	0	0	0	9	9	0	2	101	4	0	0	1	108	108	0	0	37	4	0	0	0	41	41	
815 -	830	0	0	4	1	0	0	0	5	5	1	0	80	6	1	0	8	95	106	0	0	28	3	0	0	0	31	31	
830 -	845	0	0	4	0	0	0	0	4	4	0	0	85	5	2	0	5	97	105	0	1	42	2	0	0	1	46	47	Total
845 -	900	0	0	3	1	0	0	0	4	4	0	0	115	7	1	2	14	139	160	0	0	22	4	0	0	0	26	26	TOT/ PCU
Hourly	Total	0	0	19	3	0	0	0	22	22	1	2	381	22	4	2	28	439	478	0	1	129	13	0	0	1	144	145	605 645
,																													

The	e Drive				Le	ft								Ahe	ead								Rigł	nt						
TIN	ΛE	P/CY	M/C	CAR	LGV	OGV	ogv e	BUS	TOT/	PCU	P/CY I	M/C`	CAR	LGV	OGV	OGV E	BUS	TOT/	PCU	P/CY	M/C	CAR L	.GV (DGV	ogv e	BUS '	TOT/	PCU	Fotal	
800 -	815	0	0	8	4	1	0	0	13	14	1	0	6	0	0	0	0	7	6.2	0	0	11	1	0	0	0	12	12		
815 -	830	0	0	4	0	0	0	0	4	4	0	0	3	0	0	0	0	3	3	0	0	11	0	0	0	0	11	11		
830 -	845	1	0	5	2	0	0	0	8	7.2	0	0	5	0	0	0	0	5	5	0	0	5	1	0	0	0	6	6	Tota	l
845 -	900	1	0	7	0	0	0	0	8	7.2	0	0	0	1	0	0	0	1	1	0	0	2	0	0	0	0	2	2	TOT/ PC	CU
Hourly	Total	2	0	24	6	1	0	0	33	32	1	0	14	1	0	0	0	16	15	0	0	29	2	0	0	0	31	31	80	78
[:] orr	nula PCU	PCU	0.2	0.4	1	1	1.5	2	2.3		PCU	0.2	0.4	1	1	1.5	2	2.3		PCU	0.2	0.4	1	1	1.5	2	2.3			
PM																														
Jld Dover	Road (N	ORTH																												
					Le	ft								Ahe	ead								Rigł	nt						
TIN	1E	P/CY	M/C	CAR	LGV	OGV	OGV E	BUS	TOT/	PCU	P/CY I	M/C	CAR	LGV	OGV	OGV E	BUS	TOT	PCU	P/CY	M/C	CAR L	.GV C	DGV	OGV E	SUS	тот	PCU	Гotal	
1700 -	1715	0	0	20	0	0	0	0	20	20	1	0	97	4	0	0	0	101	101	0	0	7	2	0	0	0	9	9		
1715 -	1730	0	1	14	0	0	0	0	15	14	0	0	94	6	0	0	0	100	100	0	0	7	0	0	0	0	7	7		
1730 -	1745	0	0	16	0	0	0	1	17	18	0	0	109	7	0	0	1	117	118	0	0	9	1	0	0	0	10	10	Tota	l
1745 -	1800	0	0	11	1	0	0	0	12	12	0	0	98	2	0	0	1	101	102	0	0	17	1	0	0	0	18	18	TOT/ PO	CU
Hourly	Total	0	1	61	1	0	0	1	64	65	1	0	398	19	0	0	2	419	422	0	0	40	4	0	0	0	44	44	527 5	530
St I	Lawrence				Le	ft								Ahe	ead								Rigł	nt						
TIN	1E	P/CY	M/C	CAR	LGV	OGV	ogv e	BUS	TOT	PCU	P/CY I	M/C	CAR	LGV	OGV	ogv e	BUS	TOT/	PCU	P/CY	M/C	CAR L	.GV (DGV	ogv e	BUS ⁻	тот/	PCU ⁻	Fotal	
1700 -	1715	0	0	31	0	0	0	0	31	31	0	0	3	0	0	0	0	3	3	0	0	5	0	0	0	0	5	5		
1715 -	1730	0	0	46	3	0	0	1	50	51	0	0	3	0	0	0	0	3	3	0	0	8	0	0	0	0	8	8		
1730 -	1745	1	0	35	1	0	0	0	36	36	0	0	2	0	0	0	0	2	2	1	0	4	0	0	0	0	4	4.2	Tota	.I
1745 -	1800	1	0	42	1	0	0	1	44	46	0	0	5	0	0	0	0	5	5	0	0	7	0	0	0	0	7	7	TOT/ PO	CU
Hourly	Total	2	0	154	5	0	0	2	161	164	0	0	13	0	0	0	0	13	13	1	0	24	0	0	0	0	24	24	198 2	201

Old	Dover F				Lef	t								Ahe	ad								Righ	nt						
TIM	E	P/CY N	Л/С`	CAR	LGV (OGV (ogv e	BUS ⁻	TOT/	PCU	P/CY I	M/C`(CAR	LGV	OGV () GV E	BUS	τοτ/	PCU	P/CY N	//C`(CAR L	.GV C	OGV C)GV E	BUS T	τοτ/	PCU	Total	
1700 -	1715	0	0	12	0	0	0	0	12	12	0	0	36	1	0	0	2	39	42	0	0	23	2	0	0	0	25	25		
1715 -	1730	0	0	11	0	0	0	0	11	11	2	0	49	2	0	0	2	53	56	1	0	23	3	0	0	0	26	26		
1730 -	1745	0	0	10	13	0	0	0	23	23	0	0	48	3	0	0	4	55	60	1	0	28	0	0	0	0	28	28	Total	
1745 -	1800	0	0	8	1	0	0	0	9	9	0	0	65	3	0	0	1	69	70	1	0	14	3	0	0	0	17	17	TOT/ PC	.U
Hourly	Total	0	0	41	14	0	0	0	55	55	2	0	198	9	0	0	9	216	228	3	0	88	8	0	0	0	96	97	367 3	79
The	Drive				Lef	ft		_						Ahe	ad								Righ	nt		_				
TIM	E	P/CY N	Л/C`	CAR	LGV (DGV (ogv e	BUS	TOT	PCU	P/CY I	M/C`(CAR	LGV	OGV (ogv e	BUS	τοτ	PCU	P/CY N	Л/С`(CAR L	.GV C	OGV C	ogv e	BUS T	TOT/	PCU	Fotal	
1700 -	1715	0	0	17	0	0	0	0	17	17	0	0	15	0	0	0	0	15	15	0	0	21	1	0	0	0	12	22		
1715 -	1730	0	0	7	1	0	0	0	8	8	0	0	2	0	0	0	0	2	2	0	0	14	0	0	0	0	11	14		
1730 -	1745	1	0	6	1	0	0	0	7	7.2	0	0	9	0	0	0	0	9	9	0	0	5	0	0	0	0	6	5	Total	
1745 -	1800	0	0	6	1	0	0	0	7	7	0	0	6	1	0	0	0	7	7	0	0	11	2	0	0	0	2	13	TOT/ PC	U
Hourly	Total	1	0	36	3	0	0	0	39	39	0	0	32	1	0	0	0	33	33	0	0	51	3	0	0	0	31	54	103 1	26
											PCU	0.4	1	1	1.5	2	2.3													
JUNCTI	Nackin	gton A	ppro	bach ,	/ Old	Dove	r Road	d Sou	uth																					
AM	-																													
Nackingto	n Appro		L	.eft to			RTH)					R	ight †	to OD	R (SO	UTH)														
TIM	E	P/CY N	Л/С`	CAR	LGV (, DGV (, JGV E	SUS .	TOT/	PCU	P/CY I	M/C`	CAR	LGV	OGV (, DGV E	BUS	τοτ	PCU	Гotal										
800 -	815	0	0	99	7	0	0	1	107	108	1	0	31	1	0	0	0	32	32											
815 -	830	0	0	90	4	2	0	2	98	102	0	0	16	1	0	0	1	18	19											
830 -	845	0	1	96	7	0	0	1	105	106	0	0	30	2	0	0	0	32	32		Tot	al								
845 -	900	0	0	92	9	2	1	5	109	118	0	0	16	0	0	0	1	17	18	Т	OT/ I	PCU								
Hourly	Total	0	1	377	27	4	1	9	419	433	1	0	93	4	0	0	2	99	102	Ę	518	535								
Old Dover	Road (N			Ahea	d to C	DDR (Sth)					I	Right	To N	acking	gton														
TIM	E	P/CY N	Л/C`	CAR	LGV (OGV (DGV E	BUS ⁻	TOT	PCU	P/CY I	M/C`(CAR	LGV	OGV () GV B	BUS	тот/	PCU T	Fotal										
800 -	815	1	0	40	1	0	0	1	42	44	1	1	59	9	2	1	1	73	76											
815 -	830	5	0	35	1	0	0	0	36	37	0	3	79	8	1	0	2	93	94											
830 -	845	0	0	23	1	0	0	1	25	26	0	0	59	5	1	0	4	69	75		Tot	al								
845 -	900	2	0	11	1	0	0	0	12	12	1	0	48	6	1	0	2	57	60	Т	OT/ I	PCU								
Hourly	Total	8	0	109	4	0	0	2	115	119	2	4	245	28	5	1	9	292	305	4	107	424								

Old Dover	r Road So			Left	to Na	icking	ton				A	head	d to O	ld Do	ver Ro	oad (I	Nrth)		
TIM	1E	P/CY	M/C	CAR	LGV	OGV	OGV	BUS	TOT/	PCU	P/CY I	M/C	CAR	LGV	OGV (DGV I	BUS	TOT/	PCU	Total
800 -	815	1	0	9	0	0	0	1	11	12	0	2	43	5	0	0	1	51	51	
815 -	830	0	0	15	0	0	0	0	15	15	0	0	27	3	0	1	6	37	46	
830 -	845	0	0	19	1	0	0	2	22	25	0	0	32	3	0	0	6	41	49	Total
845 -	900	0	0	18	2	0	0	0	20	20	1	0	47	1	0	0	7	55	64	TOT/ PCU
Hourly	Total	1	0	61	3	0	0	3	68	71	1	2	149	12	0	1	20	184	210	252 281
PM																				
Nackir App	proach			Left	to OD	R (No	rth)						Right	to OI	DR (So	uth)				
TIM	1E	P/CY	M/C	CAR	LGV	OGV	OGV	BUS	TOT/	PCU	P/CY I	M/C	CAR	LGV	OGV (DGV I	BUS	TOT/	PCU	Total
1700 -	1715	0	0	40	3	0	0	0	43	43	0	0	32	1	0	0	0	33	33	
1715 -	1730	1	0	46	5	0	0	1	52	54	0	0	20	0	0	0	1	21	22	
1730 -	1745	2	0	59	3	0	0	0	62	62	0	0	23	1	0	0	1	25	26	Total
1745 -	1800	1	0	55	0	0	0	0	55	55	0	0	19	0	0	0	1	20	21	TOT/ PCU
	Total	4	0	200	11	0	0	1	212	214	0	0	94	2	0	0	3	99	103	311 317
Old Dover	r Road N		Δ	head	1 to O	DR (S	outh							Right	to Na	cking	oton			
TIM	1F	P/CY	M/C	CAR	IGV	OGV (OGV	BUS	TOT	PCU	P/CY	M/C	CAR	IGV	OGV (BUS	TOT	PCU	Total
1700 -	1715	0	0	63	4	0	0	0	67	67	0	0	90	1	0	0	0	91	91	
1715 -	1730	0	0	55	3	0	0	0	58	58	0	0	94	5	0	0	0	99	99	
1730 -	1745	0	0	54	3	0	0	1	58	59	1	0	106	3	0	0	0	109	109	Total
1745 -	1800	0	0	49	3	0	0	0	52	52	1	0	100	3	0	0	1	104	106	TOT/ PCU
Hourly	Total	0	0	221	13	0	0	1	235	236	2	0	390	12	0	0	1	403	405	638 641
Old Dover	r Road So			Left	to Na	icking	ton							Ahea	d to O	DR (I	Nort	h)		
TIM	1E	P/CY	M/C	CAR	LGV	OGV	OGV	BUS	TOT	PCU	P/CY I	M/C	CAR	LGV	OGV (DGV I	BUS	TOT	PCU	Total
1700 -	1715	0	1	22	0	0	0	1	24	25	2	0	22	0	0	0	2	24	27	
1715 -	1730	1	0	26	1	0	0	1	28	30	0	0	33	0	0	0	2	35	38	
1730 -	1745	0	0	18	0	1	0	1	20	22	0	0	27	2	1	0	3	33	37	Total
1745 -	1800	0	0	29	2	0	0	0	31	31	0	0	32	3	1	0	1	37	39	TOT/ PCU
нн.	Total	1	1	95	2	1	0	2	103	107	2	0	114	5	2	0	8	129	1/1	232 248

Гotal

Otterpool Park Operational Modelling Validation Report

APPENDIX B Signal Configuration Plans

—

Crown Copyright and database right 2011. Ordnance Survey 100019238.	Drawing number ITS/2014/S/06-0061
Ordnance Survey 100019238.	ITS/2014/S/06-0061 Notes Key Junction box 550 mm depth (no under kerb ducts) Junction pit 900 mm depth (with under kerb ducts) Junction pit 900 mm depth (no under kerb ducts) Junction pit 550 mm depth (no under kerb ducts) Junction pit 550 mm depth (with under kerb ducts) Junction pit 550 mm depth (with under kerb ducts) Junction pit 550 mm depth (with under kerb ducts) Duct FW/1 100 mm dia Duct FW/3 100 mm dia Duct CW/2 100 mm dia Duct CW/2 100 mm dia Duct CW/3 100 mm dia Duct CW/4 100 mm dia Electricity supply pillar Electricity supply pillar Electricity supply pillar Pedestrian signal Short pole Pedestrian signal Short pole Pedestrian or vehicle presence detector Bus priority receiver Bus priority receiver Layout of blister tactile surface modules (red) Kets Visual pedestrian or vehicle presence detector Roadstuds Existing lighting column Guardrail type PC/1 - HV (staggered infill bors) HFS (HFS beyond stopline must be coloured Grey)
	 This drawing shalt be read in conjunction with KCC Standard Deraits:- KCC/400/002 - Pedestrian guardrail. KCC/500/020 to /025 - Ducting and Junction Pits. KCC/1200/007 - Tactile paving at controlled pedestrian crossing points. KCC/1200/009 - Traffic Signal Pole Retention Socket. This drawing shall be read in conjunction with the Contract Specification Appendices:- Appendix 5/2 - Service Duct requirements. Appendix 12/3 - Traffic Signs: Studs. Appendix 12/3 - Traffic Signs: Traffic Signals. Appendix 14/5 - Electrical Equipment. Bus priority cable shall terminate in pole 6 and be tagged at the pole and in the controller 'Bus Priority'. Ducting shall be adjusted locally to avoid existing Statutory Undertakers Plant. The details of any existing services shown on this drawing are based upon information supplied by the statutory bodies and other authorities concerned. The accuracy of this information cannot be guaranteed and the presence of other apparatus, in particular service connections to individual properties, should be expected.
	1. A C D $2.$ C
\times	
	1 19/10/14 Adjusted location of Pole 6 for new layout IB 0 08/04/14 As built drawing transferred to current frame TrafficCam fitted to pole 6 replacing EP loop IB IB Rev Revision Date Purpose of revision Drawn Checked Approved
	Kent County Council Aylesford Highway Depot
	St. Michael's Close Aylesford ME20 7BU Tel: 03000 41 81 81
	Project Intelligent Transport Systems
	Drawing title B2068 Old Dover Road/ St Lawrence Road, Canterbury Site Ref: 06/0061
	Scale 4.000 - / A 4
	1:200 at A1 Do not scale Drawing number Rev
\mathbf{V}	ITS/2014/S/06-0061 1
	This drawing is not to be used in whole or part other than for the intended purpose and project as defined on this drawing. Refer to the contract for full terms and conditions.

Administration

	Kent Ormete Ore	1				
Customer Name	Kent County Cou	ncii		Customer Order No.		
Intersection/ General Description	B2068 Old Dover Canterbury.	/ St Lawrence R	d,	Controller/ Serial Number		
	00/001			S.T.S. /EM Number	66221	Issue 10
Controller	• New	O Modification	on	Equipment Installation by	Signal Company	
Area Specifications/ Customer Drawings	Drawing No. 2862	2/S/1E		Slot Cutting by	Signal Company	
Specification Section	KCC General Spe	ecification Issue	3.0	Civil Works by	Civil Contractor	
Contract/Tender Ref:				Customer's Engineer	Paul Clark	
Quotation No.				Telephone Number	01622 666063	
Works Order No.	5790/484/3					
Signal Engineer ma	arco Gmys		(Configuration Check Valu	e 2B BD 74 C	26
Hardware T800	Firmware	Type and Issue	PB800 IS	S 19	Other Options K	TD LO
Hardware T800 -ST950/ST900/ST750 Se	Firmware ries Cabinet Options	Type and Issue	PB800 IS	S 19	Other Options K	TD LO
Hardware T800 ST950/ST900/ST750 Se Cabinet/Rack	Firmware	Type and Issue	PB800 IS	S 19 O O	Other Options K	rd Lo
Hardware T800 -ST950/ST900/ST750 Se Cabinet/Rack Cabinet/Rack Variant	Firmware ries Cabinet Options	Type and Issue	PB800 IS t Type Options Cuckoo Optior	S 19 O O 15	Other Options K	
Hardware T800 -ST950/ST900/ST750 Se Cabinet/Rack Cabinet/Rack Variant Mains Supply	Firmware ries Cabinet Options	Type and Issue Ki	PB800 IS t Type Options Cuckoo Optior	S 19 O O ns	Other Options K	
Hardware T800 -ST950/ST900/ST750 Se Cabinet/Rack Cabinet/Rack Variant Mains Supply Peak Lamp Current	Firmware ries Cabinet Options 230 Volts 9 Amps	Type and Issue Ki 50 Hz Dimming	PB800 IS t Type Options Cuckoo Optior	S 19 O O ns Answer Issue	Other Options K	TD LO
Hardware T800 ST950/ST900/ST750 Se Cabinet/Rack Cabinet/Rack Variant Mains Supply Peak Lamp Current Average Lamp Power	Firmware ries Cabinet Options 230 Volts 9 Amps 1600 Watts	Type and Issue Ki 50 Hz Dimming Voltage	PB800 IS t Type Options Cuckoo Optior	S 19 O O NS Answer Issue Edit Issue	Other Options K	TD LO
Hardware T800 ST950/ST900/ST750 Se Cabinet/Rack Cabinet/Rack Variant Mains Supply Peak Lamp Current Average Lamp Power Total Average Power	Firmware ries Cabinet Options 230 Volts 9 Amps 1600 Watts 1600 Watts	Type and Issue Ki 50 Hz Dimming Voltage Low Inrush Transformer	PB800 IS t Type Options Cuckoo Option	S 19 O O NS Answer Issue Edit Issue	Other Options K	TD LO

Phases, Stages and Streams

	Streams			Phases	
	Current Number of Streams			Current Total Number of Phases	11
			0	Number of Real Phases	7
				O Number of Dummy Phases	4
<u>гт</u> ;	Stages			Switched Signs	
0	Current Number of stages (inc. ALL-RED stages)	6	0	Number of Switched Signs	0
	Ac	tion			
		Add At	Dele	te At	

Facilities/Modes Enabled and Mode Priority Levels

Facilities UTC Serial/Internal UTMC OTU Free-standing OTU Integral TC12 OTU Serial MOVA	Master Time Clock Holiday Clock FT To Current MAX Linked Fixed Time	 Lamp Monitoring RED Lamp Monitoring Pelican/Puffin/Toucan Standalone Manual 	 Extend All Red Speed Measurement Ripple Change London IMU 	 Non-UK Fail to Part Time Fail To Hardware Flashing Download To Level 3
12 Starting Intergreen Mode Priority			Configuration Complexity	
 Part Time Emergency Vehicles ✓ Hurry Call ✓ Priority Vehicle ✓ Manual Control Manual Step On ✓ Selected FT or VA or CLF ✓ UTC ✓ CLF (Non-Base Time) ✓ CLF (Base Time) ✓ Vehicle Actuated ✓ Fixed Time 			Standard.8DF Correspondence Monitori ✓ Reds Switched Signs Flash Rate (ms) 400 0	● High ● Maximum PROM data file Image: Constraint of the second sec

Phases in Stages

	Stages in Streams	
Stages in Streams		
0 1 2 Phase or Stage to revert to in absence 1 Startup Stage 1 Switch Off Stage	4 5 6 7 Note: For a Stand-Alone Stream, the reversion must be to All Red stage or Traffic stage/phase to meet the relevant standard or specification.	
Standalone Pedestrian		
Stages U U U U U U U U U U U U U		
	_	

Works Order : 5790/484/3 EM Number : 66221 Engineer : marco Gmys : B2068 Old Dover / St Lawrence Rd, Canterbury. 06/061 Intersection

Phase Type and Conditions

Thase	Phases A to P	0				
Phase	Title	Туре	Арр. Туре	Term. Type	Assoc. Phase	
A	Old Dover Rd NW	0 - UK Traffic	0	0 - 1		
В	St Lawrence Rd	0 - UK Traffic	0	0 - 1		
С	Old Dover Rd SE RT	2 - UK GreenArrow	0	2 - 1	D	
D	Old Dover Rd SE	0 - UK Traffic	0	0 - 1		
E	The Drive	0 - UK Traffic	0	0 - 1		
F	Peds across St Lawrence Rd	1 - UK Far Side Pedestrian	2	0 - 1		
G	Peds across Old Dover Rd SE	1 - UK Far Side Pedestrian	2	0 - 1		
Н	Dummy All Red	2 - UK GreenArrow	0	0 - 1		
Ι	Fixed Phase to appear in Stage 3	1 - UK Far Side Pedestrian	0	0 - 1		
J	Phase F dummy	1 - UK Far Side Pedestrian	1	0 - 1		
K	Phase G dummy	1 - UK Far Side Pedestrian	1	0 - 1		

1) App Types: 0 = Always Appears, 1 = Appears if dem'd prior to interstage, 2 = If dem'd, 3 = If dem'd before end of window time 2) Term Types: 0 = Term's at end of stage, 1 = Term's when Assoc phase gains R.O.W, 2 = Term's when Assoc phase loses R.O.W.

3) The H/W Fail Flash fields are for information only on all but ST900ELV Controllers. For other controllers, physical switches or links (etc.) select which aspects flash and these need to be set up manually.

Opposing and Conflicting Phases

	To Phase												
	А	В	С	D	Е	F	G	Η	I	J	К		
А		Co	Co	0	Co	Co	Co	0	0	0	0		
В	Со		Co	Co	Co	Co	Co	0	0	0	0		
С	Co	Со		0	Co	Co	Co	0	0	0	0		
D	0	Co	0		Co	Co	Co	0	0	0	0		
Е	Co	Co	Co	Co		Co	Co	0	0	0	0		
F	Со	Co	Co	Co	Co		0	0	0	0	0		
G	Со	Co	Co	Co	Co	0		0	0	0	0		
Н	0	0	0	0	0	0	0		0	0	0		
I	0	0	0	0	0	0	0	0		0	0		
J	0	0	0	0	0	0	0	0	0		0		
Κ	0	0	0	0	0	0	0	0	0	0			

Phase Minimums, Maximums, Extensions, Ped Leaving Periods

Phase Minimums, Maximums, Extensions,	Ped Leaving Periods	Phases A to P	0
Phase Min Green Min Ped Clr A 7 0 B 7 0 C 4 0 D 7 0 E 7 0 F 6 4 G 6 7 H 1 0 J 6 0 K 6 0	Extensions Maximums 1.6 30 20 1.6 20 15 0.0 15 10 1.6 60 40 0.0 12 12 0.0 6 6 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0	C D E F 40 20 0 0 15 12 0 0 15 12 0 0 10 10 0 0 45 20 0 0 12 12 0 0 6 6 0 0 6 6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G H Pre-timed 0 0 0
	100 UI 1110A UE13.		

Phase Intergreen Times

Note: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PIT, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below.

	To Phase												
	А	В	С	D	Е	F	G	Н	I	J	K		
А		6	5		6	8	8	3	8	8	8		
В	5		5	5	6	5	7	3	7	5	7		
С	6	5			6	8	5	3	8	8	5		
D		5			6	8	5	3	8	8	5		
Е	5	5	5	5		7	8	3	8	7	8		
F	8	8	8	8	8			4					
G	12	12	12	12	12			7					
н	0	0	3	3	0	0	0						
I													
J													
K													

From Phase

Intergreen Handset Limits

HIGH 199

Copy Intergreen Values

Phase Timing Handset Ranges

ase Timin	g Handset Ranges		
Initia	alise Min Green Limits	7	
Phase	Min. Green Min. Max.	Phase	Min. Max. Min Canal Max Corr
A	3 255	Q	
В	3 255	R	Vehicle Extension
С	3 255	S	Min. 0.0 Max. 10.0
D	3 255	Т	Phase Delay
E	3 255	U	Min. 0 Max. 10
F	3 255	V	Starting I/G
G	3 255	W	Min. 4 Max. 12
п 1		X	
J	3 255	Z	Min. O Max. 12
K	3 255	A2	
L		B2	Traffic Phase Leaving
М		C2	Min. <u>3.0</u> Max. <u>3.0</u>
N		D2	Traffic Phase Red/Amber
0		E2	Min. 2 Max. 2
Р		F2	

VA Demand and Extend Definitions

-Demands-				(•	Phases A to P					
For Unlatche Conditioning	ed demands prece MUST be used to	de the name with a specify unlatched	a #. demands.	Extensions						
AX	AY	AZ	BPA	AX	AY	AZ				
BX	BY	BPB		BX	BY	BZ				
BPC				СР						
DX	DY	DZ	BPD	DX	DY	DZ				
				MVD6						
PB2F	PB3F									
PB4G	PB5G									

Phase Internal/Revertive Demands

-Phase li	Phase Internal/Revertive Demands														
Start-	up Vehicle F	Responsive [Demands-												
A 🔽	В 🗸	c 🔽	D 🗸	E 🗸	F 🗌	G 🗌	н 🗌	I 🗌	J 🔽	К 🔽					
Dema	ands Inserted	d When Leav	ving Manua	I and Fixed	Time Mod	es									
A 🔽	в 🗸	c 🗸	D 🗸	Е 🗸	F 🗌	G 🗌	н 🗌	I 🗌	ΙV	К 🔽					
Unlate	ched Deman	ds that Start	Max Time	rs											
A 🔽	в 🗸	c 🗸	D 🗸	E 🗸	F 🗸	G 🗸	н 🗌	I 🗌	J 🔽	К 🗸					
Reve	rtive Phase I	Demands													
A	B	C	D	E	F	G	Н	1	J	К	L	М	Ν	0	Р
	В	D	D												
Q	R	S	Т	U	V	W	Х	Y	Z	A2	B2	C2	D2	E2	F2
L															

Stages - Prohibited, Alternative, Ignored Moves

Stages - Prohibited, Alternative, Ignored Moves

Stages - Prohibited, Alternative, Ignored Moves

Stage Internal Demands/Pedestrian Window Times

-Stage	Intern	al De	emand	s/Ped	estriar	n Windo	w Time	s						 					 	 							
Sta	rt-up V	'ehicl	le Res	ponsiv	ve Der	nands-				_		_		 	_		_				_		_		_		
0		1		2		3] 4		5																		
	mands	Inse	rted W	/hen L	eaving	g Manua	I and F	Fixed T	ime l	Modes				 													
0		1		2		3	4		5																		
]																				
Unl	atched	l Derr	nands	that S	Start M	aximum	Timer	s						 													
0	\checkmark	1	\checkmark	2	\checkmark	3 🗸] 4	\checkmark	5	\checkmark																	
∟ Wir	ndow T	ïmes	;											 													
		1		n		2	4		F		6		7	0		0		10	11	10		10		14		15	
0		0		0		0	4		0		0		1	0		9		10		12		13		14		15	
16		17		18		19	20		21		22		23	24		25		26	27	28		29		30		31	
Exc	ception	al Sta	ages-											 													
]																				

Fixed Time

Fixed Time																	
Stage Moves & Tim	nes (Not Fi	ixed Time	to Current	Max)													
Current Stage	0	1	2	3		4	5	6	7								
Next Stage																	
Time																	
Current Stage Next Stage	8	9	10	11		12	13	14	15								
Time																	
Current Stage	16	17	18	19		20	21	22	23								
Next Stage																	
Time																	
Current Stage Next Stage	24	25	26	27		28	29	30	31								
Time																	
Phases Demanded	and Exter	nded unde	er Fixed Tir	ne to Curr	ent Max												
Demand	A	B ☑	c ☑	D V	E	F	G	H 		J	ĸ	L	M	N	° □	P	
Extend	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark												
Demand	Q 	R	s □	Т	U	V	W	X	Υ	Z M	A2	B2	C2	D2	E2	F2	
Evtend																	

UTC General Data

Type of UTC-	
106	G 316
	Integral OTU Address
2	Number of Control Words
3	Number of Reply Words
Controller to	respond to TC bit.
	of UTC to be disabled by Priority and LR
	Non UTC RTC synchronisation input name
RTC Synchror	Non UTC RTC synchronisation input name
RTC Synchror	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input)
RTC Synchror	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input) Time
RTC Synchror Clock Sync Day Time Only	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input) Time 12:00:00
RTC Synchror Clock Sync Day Time Only	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input) Time 12:00:00 firm Time (UTC RT output)
RTC Synchror Clock Sync Day Time Only Clock Conf Day	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input) Time 12:00:00 firm Time (UTC RT output) Time
RTC Synchror Clock Sync Day Time Only Clock Conf Day Time Only	Non UTC RTC synchronisation input name nisation Times chronise Time (UTC TS input) Time 12:00:00 firm Time (UTC RT output) Time 12:00:00

UTC Control and Reply Data Format

-UTC Control and Re	eply Data Format							
Control Words	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8
Word 1	F1	#F2	#F3	#F4	#F5	D2	D3	D4
Word 2	D5	DX1	TS					
Word 3								
Word 4								
Reply Words								
Word 1	G1	G2	G3	G4	G5	DR2	DR3	DR4
Word 2	DR5	DF	ССТ	SP1	RR	LF1	LF2	BD1
Word 3	BD2	BD3	BD4	CC				
Word 4								
Word 5								
Word 6								
Word 7								
Word 8								
Word 9								
Word 10								
Word 11								
Word 12								
Word 13								
Word 14								

UTC Phase Demand and Extend Definitions

Demands			@	Phases A to P	0	
e For Unlatc Conditionir	hed demands, preceed the na ng MUST be used to specify	ame with a #. unlatched demands.	Extensions			
DX1			DX1			
DX1	D4		DX1	D4		
DX1	D2		DX1	D2		
DX1			DX1			
DX1	D5		DX1	D5		
					1	
DX1	D3		<u>-</u>			
DX1	D3					

UTC Stage and Mode Data Definitions

								Mode Data Definitions
tane	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Manual Mode Operative:
naye N				□ 16	I DICE DI	Commin Dit	Commin Dit	□ G1/G2
	F1	G1		17				Manual Mode Selected:
2	#F2	G2	DR2	18				🗌 G1/G2 🗹 RR 🗌
}	#F3	G3	DR3	19				No Lamp Power, or Lamps Off due to RLM
1	#F4	G4	DR4	20				or Part Time:
5	#F5	G5	DR5	21				
;][1[22				Detector Fault
				23				
}				24				Normal NOT selected on the
)				25				Manual Panel:
0				26				G1/G2
1				27				PP Putton Sologtod
10				20				
12				28				
3				29				If UTC Reply Confirms are required for a
4				30				Controller Fault (CF) OR for separate MC and RR replies. Conditioning must be used.
15				31				

MTC - Time Switch Parameters

MTC - Time Switch Parameters Array

MTC - Day Type

MTC - D	ау Туре-						
No.	Mon	Tue	Wed	Thu	Fri	Sat	Sun
0						\checkmark	
1							\checkmark
2	\checkmark						
3		\checkmark					
4			\checkmark				
5				\checkmark			
6					\checkmark		
7	\checkmark						
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
10							
11							
12							
13							
14							
15							

MTC - Timetable

-MTC - Ti	metable					7
			• 0 - 15 • 16 - 31	0 32 - 47	O 48 - 63	
No.	Day Type	Time	Description	Function Code	Plan/ Parameter	
0	9	07:30:00	Introduce Max Set A	2	0	Function Codes:
1	9	09:30:00	Introduce Max Set B	2	1	0 = Isolate From CLF
2	9	15:00:00	Introduce Max Set C	2	2	1 = Introduce a CLF Plan
3	9	18:30:00	Introduce Max Set D	2	3	2 = Introduce a Parameter
4	0	07:30:00	Introduce Max Set B	2	1	(Combination of event switch
5	0	19:00:00	Introduce Max Set D	2	3	3 = Selects an Individual ever
6	1	08:30:00	Introduce Max Set B	2	1	switch to be set
7	1	18:30:00	Introduce Max Set D	2	3	4 = Selects an Individual ever switch to be cleared.
8	0		Introduce Plan 1	1	1	
9	0		Introduce Plan 2	1	2	
10	0		Introduce Plan 3	1	3	
11	0		Introduce Plan 4	1	4	
12	0		Isolate	0	0	
13	0		Introduce Plan 2		2	
14	0		Introduce Plan 4	1	4	
15	0		Isolate		0	

Priority and Emergency Vehicle - General

──Priority a	nd Emergency Vehio	cle - Ger Type Priorit	neral		DFM		DFM	Demands	Revertive Demands	Revertive Demands to Start Inhibit Timer
	Input Name	Emer P	gency E	Phase	Time (x10)	Gap Time	Self Reset	Sets 0 1 2 3	Sets 0 1 2 3	Sets 0 1 2 3
Unit 0	BPA	ullet	0	A	60	4	0	\square \square \square \square		
Unit 1	BPB	ullet	0	В	60	4	0	$\square \square \square \square$		
Unit 2	BPC	ullet	0	С	60	4	0	\square \square \square \square		
Unit 3	BPD	ullet	0	D	60	4	0	\square \square \square \square		
Unit 4		ullet	0		30	4	0	\square \square \square \square	$\bigtriangledown \Box \Box \Box$	
Unit 5		ullet	Ο		30	4	0	\square \square \square \square	\square \square \square \square	
Unit 6		ullet	0		30	4	0	\square \square \square \square	\square \square \square \square	
Unit 7		ullet	0		30	4	0	\square \square \square \square		
🔲 Input	s From Conditioning		Note: Bus P If Bus Note: Valid	Priority Unit va Unit is to ger values for DF	lues will not b herate a VA d M Self Reset	be used unles lemand, then : 1 or 0 for Pl	ss a valid Input input name m B800, 0-255 fo	Name is specified ust also be specified on V <i>F</i> r PB801 and later	A demands screen	

Priority - Delays, Unit Inhibits and Associations

	Delay Time	Priority Units Inhibited		Associated Priority Units	.
	First Second	0 1 2 3	4 5 6 7	0 1 2 3	4 5 6 7
Jnit 0					
Jnit 1					
Jnit 2					
Jnit 3					
Jnit 4					
Jnit 5					
Jnit 6					
Jnit 7					
irst Delay I	Handset Range Min	Мах	Second Delay Hands	set Range Min	Max
ïrst Delay I	Handset Range Min	Мах	Second Delay Hands	set Range Min	Max
irst Delay I	Handset Range Min	Max	Second Delay Hands	et Range Min	Max
irst Delay I	Handset Range Min	Max	Second Delay Hands	set Range Min	Max
irst Delay I	Handset Range Min	Max	Second Delay Hands	set Range Min	Max
irst Delay I	Handset Range Min	Max	Second Delay Hands	et Range Min	Max
irst Delay I	Handset Range Min	Max	Second Delay Hands	set Range Min	Max
First Delay I	Handset Range Min	Max	Second Delay Hands	et Range Min	Max
First Delay I	Handset Range Min	Max	Second Delay Hands	et Range Min	Max

	Dui auitus T	Time Cat															
Priority Units	Priority T Set O C C C C C C C C C C C C C C C C C C		s	Pri Ma Ex Int	iority Un aximum itension nibit Tim	it time (see e (secs) Com D		0 30 10.0 120 Ation T F	1 30 [10.0 [120 [2 30 [10.0 [120 [H	4 5 5 15 0.0 10 0 50	6 15 0 10.0					
İ a	ast Mo	dified	18/11	/201	15 ls	sue 1	0046	3								Form F	Ref: 4.5.3

r	ority Tim	o Soto																	
		6 9612													7				
	-Sets-			Priority L	Init		0	1	2	3	4	5	6	7					
	00	() 2 ()		Maximun	n time (se	ecs)	30	30	30	30	15	15	15	15					
	• 1	() 3		Extensio	n time (se	ecs)	10.0	10.0	10.0	10.0	10.0) 10.0	10.0	10.0					
'	Cor	ov Set		Inhibit Ti	me (secs))	120	120	120	120	50	50	50	50					
		oy oor													J				
					Com	pensa	ation 7	Times	6										
		Α	В	C	D	Е	F	G	Н		I	J	K						
	0																		
N.	1																		
Unit	2																		
ority	3																		
Prić	4									_									
	6								-	_	_								
	7								+	+	-								
		J			1	I	ļ	1	1	-									
Las	t Modi	fied 18	/11/	/2015, I	ssue 1	10.0.4	6										Fo	rm Ref: 4.5	5.3 (2)

	ui a uitu . Tima	- C-4																		
- -μ	Tiority I im	ie Sets														1				
	Sets-			Priorit	y Unit			0	1	2	3	4	5	6	7					
	00	• 2		Maxin	num tim	ne (sec	cs)	30	30	30	30 ´	5 1	5	15	15					
	01	О 3		Exten	sion tin	ne (sec	cs)	10.0	10.0	10.0	10.0	0.0 1	0.0	10.0	10.0					
		ny Cat		Inhibit	Time ((secs)		120	120	120	120 5	50 5	50	50	50					
	0	py Sei														I				
					C	Com	pensa	ation T	ïmes											
		A	E		;	D	Е	F	G	Н	I	J	ł	K						
	0												Т							
	1												+							
Jnits	2																			
ر الأ	3																			
rior	4																			
	5																			
	6												\perp							
	1																			
La	st Modi	fied 18	/11	2015	Iss	ue 10	0.0.46	6										F	orm Ref: 4.5	5.3

	:'t T i	• C • • •																	
""	only nm	e Sels																	
	-Sets-			Priority I	Jnit		0	1	2	3	4	5	6	7					
	00	O 2		Maximu	m time (se	ecs)	30	30	30	30	15	15	15	15					
	() 1	• 3		Extensio	on time (se	ecs)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0					
	Cor	ov Set		Inhibit T	ime (secs))	120	120	120	120	50	50	50	50					
		,																	
					Com	ipensa	ation	Times	6										
		А	В	C	D	Е	F	G	Н			J	K						
	0																		
ß	1																		
.iu	2					<u> </u>													
ority	3					<u> </u>			_				$ \rightarrow $						
P	5								_	_									
	6																		
	7																		
	ļ	<u> </u>			- 	<u> </u>						Į							
+															 	 			
Las	t Modi	fied 18	/11/	/2015,	Issue 1	10.0.40	6										Forr	m Ref: 4	.5.3 (4)

Priority - Allowed and Enforced Demands

Hurry Call

Hurry Call	Stage Called	Call Input Name	Cancel Input Name	Confirm Output Name	Delay Time	Hold Time	Prevent Time
0	2	*SCRT10	CANCLHC0		0	30	0
1	1	*SCRT12			15	7	0
2					0	0	0
3					0	0	0
4					0	0	0
5					0	0	0
6					0	0	0
7					0	0	0
—Hurry Ca	all Limit Values	Min. Max	κ.				
Call	Delay	0 255	5				
Call	Hold	0 255	5				

Manual Panel

-Manual Panel			
Stage Butt	ons and LEDs		
Button No.	Title		Called Stage for Stream 0 1 2 3 4 5 6 7
0	All Red		
1	Old Dover Road		1
2	Old Dover Rd SE + RT		2
3	Pedestrians		3
4	St Lawrence		4
5	The Drive		5
6			
7			
General LE	EDs		Manual Mode Enable
	AUX 1 AUX 2 AUX 3	AUX 4 AUX 5 (Hurry Call) (Higher Priority)	Always NOTE: Ear this to approve Special
Conditioned			When Handset Plugged in (Note 1) Conditioning is required.
General Bu	uttons None SW1 SW2 SW3	Manual Signals On	O When 'MND' Command Entered
Momentary		Immediate Signals On	Mode Select Switches Disabled
Dim Overric RR		As Start-Up	VA Fixed Time CLF

Manual Mode - Optional Phases Appearance

-Manual Mode - Optional	Phases App	earance-														
	А	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	Ν	0	Р
Never Appears	0	Ο	0	Ο	Ο	0	Ο	0	Ο	Ο	0	0	Ο	0	Ο	Ο
Demand Dependant	0	0	0	0	0	ullet	ullet	0	0	0	0	0	0	0	0	0
Always Appears	۲	ullet	ullet	ullet	ullet	0	0	\odot	ullet	\odot	ullet	0	0	0	0	0
	Q	R	S	т	U	V	W	Х	Y	Z	A2	B2	C2	D2	E2	F2
Never Appears	0	Ο	0	0	Ο	0	Ο	0	0	Ο	0	0	Ο	Ο	0	Ο
Demand Dependant	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Always Appears	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Extend All Red - General

	Extend to Max			—All Red Timings [—]								
F	Part Time Emergency Vehicle			Stream	0	1	2	3	4	5	6	7
ŀ	Hurry Call			Extension Time	0.0							
L	.RT			Max Time	8							
r N	Manual											
Ν	Janual Step On											
l												
(CLF											
١	/A*		*	Selecting Extend	to Max on V	A mode will						
F	ixed Time			also cause Extend and Priority modes	to Max on Ci	LF, UIC						
			·									
Dete	ctors Associated wit	th All Red Extension	on Units	5								
Dete Unit	ctors Associated wit	th All Red Extension	on Units	Assoc	iated Detecto	Drs						
Dete Unit	ctors Associated wit	th All Red Extensi	on Units	Assoc	iated Detecto	ors] The
Dete Unit I	ctors Associated wit MVD4 MVD4	th All Red Extensi	on Units	Assoc	iated Detecto	Drs						The association between
Dete Unit 1 2 3	Ctors Associated with MVD4 MVD4 CP	th All Red Extension	on Units	Assoc	iated Detecto	Drs						The association between detectors and extension unit
Dete Unit 1 2 3 4	ctors Associated wi MVD4 MVD4 CP	th All Red Extensi	on Units	Assoc	iated Detecto							The association between detectors and extension unit must be
Dete Unit 1 2 3 4 5	Ctors Associated wi	th All Red Extensi			iated Detecto	DIS						The association between detectors and extension unit must be performed in special

Extend All Red - Stage To Stage Moves

Extend All Red - Independent Intergreens

Special Conditioning

; USE OF SCRATCH BITS ; ------;SCRT0 ;SCRT1 ;SCRT2 ;SCRT3 ;SCRT4 ;SCRT5 ;SCRT6 ;SCRT7 ;SCRT8 ;SCRT9 ;SCRT10 = REQUEST HURRY CALL 0 ;SCRT11 = CONFIRMATION THAT HURRY CALL 0 HAS RUN, SO AS TO ALLOW HURRY CALL 1 ;SCRT12 = REQUEST HURRY CALL 1 ;SCRT13 = ; SCRT14 = ;SCRT15 = ; HURRY CALL CONDITIONING ; REQUEST HURRY CALL 0 ; -----CCT04.CCT05.NOT(PHASEF).NOT(PHASEG).NOT(CNDTMA21)=SCRT10 ; HURRY CALL 0 IS REQUESTED, BY SCRT10, IF ; BOTH HURRY CALL CALL CANCEL INPUTS ARE TRUE ; AND PHASE F IS NOT GREEN ; AND PHASE G IS NOT GREEN ; AND HURRY CALL PREVENT CONDITIONING TIMER 1 ; IS NOT RUNNING ; HURRY CALL 0 PREVENT PERIOD -----IFT HRYSTT1 EQL<1> THN ; IF HURRY CALL 0 IS TIMING REQUEST OR FORCING HURRY MODE RUN < 20 >; REPEATEDLY START CONDITIONING TIMER 0 END IFT (HRYSTT1 EQL<2>).CNDTER20 THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD AND CONDITIONING TIMER 0 RUN<21> ; HAS JUST TERMINATED THEN START CONDITIONING TIMER 1 END ; CANCEL HURRY CALL 0 ; ------IFT HRYSTT1 EQL<2> THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD THEN IFT (NOT(HC1).NOT(HC2))+(LCPHJ+LCPHK) THN ; HURRY CALL 0 IS CANCELLED IF EITHER TRUE=CANCLHC0 ; LOOPS HC1 AND HC2 ARE BOTH UNOCCUPIED END ; OR END ; PHASE J OR PHASE K (F OF G) ARE DEMANDED ; REQUEST HURRY CALL 1 ; ; HURRY CALL 1 MAY BE ENABLED/ DISABLED BY HANDSET USING THE ; CONDITIONING FACILTIY ENABLE COMMAND "CFE". ; CONTROLLER CFE0 DEFAULT VALUE IS NORMALLY "0" (DISABLED) ; WHEREAS THE REQUIRED DEFAULT STATE FOR HURRY CALL 1 IS ENABLED. ; THEREFORE IN CONDITIONING THE RESULTANT STATE OF CFE0 HAS BEEN INVERTED

Special Conditioning

```
; TO ALLOW THE DEFAULT VALUE OF "0" TO MEAN ENABLED.
;
; TO DISABLE HURRY CALL 1 SET CFE0 TO "1"
; TO ENABLE HURRY CALL 1 SET CFE0 TO "0"
:
IFT NOT(CFE0 EQL<1>) THN ; IF HURRY CALL 1 CONDITIONING IS ENABLED THEN
IFT HRYSTT1 EQL<2> THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD THEN
RUN<22>
                           ; REPEATEDLY START CONDITIONING TIMER 2
END
IFT CNDTER22 THN
                       ; IF CONDITIONING TIMER 2 HAS JUST TERMINATED THEN
                      ; SET SCRATCH BIT SCRT11 TRUE
TRUE=SCRT11
END
IFT NOT(PREVB).PHASEB.SCRT11 THN ; IF PHASE B HAS JUST GONE TO GREEN AND
TRUE=SCRT12
                                  ; SCRATCH BIT SCRT11 IS TRUE THEN
ELS
                                  ; SET SCRATCH BIT SCRT12 TRUE
FALSE=SCRT12
                                  ; OTHERWISE SET SCRATCH BIT SCRT12 TO FALSE
END
IFT PHASEA THN
                                  ; IF PHASE A IS AT GREEN THEN
FALSE=SCRT11
                                  ; RESET SCRATCH BIT SCRT11 TO FALSE
END
END
; STAGE 1 REVERSION WITH UNSATISFIED PED DEMAND
STAGE3.(LCPHJ+LCPHK).(NOT(LCPHB+UCPHB+LCPHC+UCPHC+LCPHE+UCPHE))=+LCPHA ;ALLOW REVERT TO STAGE 1 IF A PED PHASE DEMAND AT I
                                                         ;STAGE TO STAGE 3.
MAUXSW1=MTL22
                                                ;AUX 1 LED LIT WHEN SWITCH 1 OPERATED ( dimming overide )
(MODE0 EQL<6>)=MIL23
                                                ;AUX 2 LED LIT WHEN UTC ACTIVE
(MODE0 EOL<3>)=MIL05
                                                ;AUX 3 LED LIT WHEN RUNNING CLF
(MODE0 EQL<13>)=MIL17
                                                ;BUS PRIORITY LIGHTS HIGHER PRIORITY LED
; CALL / CANCEL UNIT OPERATION
; ------
CCTO0=+LCPHA
                                                ;CALL CANCEL UNIT 0 INSERTS A LATCHED DEMAND FOR PHASE B
CCTO1=+LCPHB
; UTC REPLIES
: _____
LMPON.LPSPRD.SWLMPS.Not(FLF17).NOT(STAGE1)=G1
                                              ;LAMPS OFF AND STAGE CONFIRMS FOR UTC G1 G2 BITS
LMPON.LPSPRD.SWLMPS.Not(FLF17).NOT(STAGE2)=G2
NOT((MODE0 EQL<1>+MODE0 EQL<2>+MODE0 EQL<4>))=RR ;RR BIT REPLIES MANUAL,F.T AND VA MODES
; UTC BUS PRIORITY REPLIES
;
                                                ;SP1 BIT REPLIES WHEN IN PRIORITY MODE
NOT(MODE0 EQL<13>)=SP1
NOT(BPA)=BD1
                                               ;BD1 REPLIES WHEN INPUT BPA IS ACTIVE
NOT(BPB)=BD2
                                               ;BD2 REPLIES WHEN INPUT BPB IS ACTIVE
                                               ; BD3 REPLIES WHEN INPUT BPC IS ACTIVE
NOT(BPC)=BD3
NOT(BPD)=BD4
                                               ;BD4 REPLIES WHEN INPUT BPD IS ACTIVE
```

Special Conditioning

;ANY LAMP FAIL REPLIES UTC LF1 BIT. NOT(IMPANY0) = IF1NOT(LMP2RED0)=LF2 ;SECOND RED LAMP FAIL REPLIES UTC LF2 BIT. ; EXTEND ALL RED S[ECIAL CONDITIONING FOR UNITS 1 TO 3 MVD4+MVD4_ext+CP+CP_ext+SSFIX =IGE01 ; UNIT 1 (MVD4+MVD4_ext+CP+CP_ext+SSFIX)=IGEC1 MVD4+MVD4_ext+SSFIX =IGEO2 ; UNIT 2 =IGEC2 MVD4+MVD4_ext+SSFIX CP+CP_ext+SSFIX =IGEO3 ; UNIT 3 =IGEC3 CP+CP_ext+SSFIX ; RTC SYNC CONFIRM SIGNAL ; CONFIRM SIGNALS AFTER SYNC TIME AS FOLLOWS -;SUNDAY---- FOR 3 SECONDS ;MONDAY---- FOR 5 SECONDS ;TUESDAY---- FOR 7 SECONDS ;WEDNESDAY-- FOR 9 SECONDS ;THURSDAY--- FOR 11 SECONDS ;FRIDAY---- FOR 13 SECONDS ;SATURDAY--- FOR 15 SECONDS IFT 1SCRT254.NOT CC THN TRUE=1SCRT255 END 1SCRT254.NOT(1SCRT255)=CCT NOT(MODE0 EQL<8>)=+1SCRT254 NOT((RTCDYS EQL<1>).(RTCSEC GRT<2>))=.1SCRT255 ; RESET FLAG - SUNDAY NOT((RTCDYS EQL<2>).(RTCSEC GRT<4>))=.1SCRT255 ; RESET FLAG - MONDAY NOT((RTCDYS EQL<3>).(RTCSEC GRT<6>))=.1SCRT255 ; RESET FLAG - TUESDAY NOT((RTCDYS EQL<4>).(RTCSEC GRT<6>))=.1SCRT255 ; RESET FLAG - WEDNESDAY NOT((RTCDYS EQL<5>).(RTCSEC GRT<10>))=.1SCRT255 ; RESET FLAG - THURSDAY NOT((RTCDYS EQL<6>).(RTCSEC GRT<12>))=.1SCRT255 ; RESET FLAG - FRIDAY NOT((RTCDYS EQL<0>).(RTCSEC GRT<14>))=.1SCRT255 ; RESET FLAG - SATURDAY

Form Ref: 5.1 (3)

Special Conditioning

; EXTERNAL LAMP MONITORING FACILITY ; ---------; DOUBLE RED FAIL SENDS ALL PEDESTRIAN PHASES TO RED RF2:.PHASEF=1AUXCMDF4 *.PHASEG=1AUXCMDG4 ; WAIT INDICATORS LIT IF DEMAND EXISTS RF2:+LCPHJ=+1WTCTRLF *+LCPHK=+1WTCTRLG ; FOR ASSOCIATED DUMMY PHASE(S) OR IF RF2 PRESENT ; REMOVES ALL PEDESTRIAN PHASE DEMANDS UNTIL FALSE:::=.LCPHF *=.UCPHF ; FOLLOWING BLOCK INSERTS THEM *=.LCPHG *=.UCPHG PHASEJ.((NOT CNDTMA32)+(NOT RF1)).(NOT RF2)=+UCPHF ; DEMAND REAL PEDESTRIAN PHASE WHEN DUMMY REACHES ; GREEN IF RF1 ABSENT OR AFTER DELAY TIMER IF RF1 PRESENT ; DO NOT DEMAND AT ALL IF RF2 PRESENT PHASEK.((NOT CNDTMA33)+(NOT RF1)).(NOT RF2)=+UCPHG ; DEMAND REAL PEDESTRIAN PHASE WHEN DUMMY REACHES ; GREEN IF RF1 ABSENT OR AFTER DELAY TIMER IF RF1 PRESENT ; DO NOT DEMAND AT ALL IF RF2 PRESENT RF2:+LCPHF=PRVPHF ; PREVENT PEDESTRIAN PHASES FROM APPEARING IF RF2 ; PRESENT OR IF A LATCHED DEMAND EXISTS *+LCPHG=PRVPHG ; RESET RLMU DELAY TIMERS IF ASSOCIATED DUMMY PHASES IFT (NOT PHASEJ) THN ; ARE NOT AT GREEN RUN <32> END IFT (NOT PHASEK) THN RUN <33> END (NOT RF2):::.PRSLMPAF=+UCPHJ ; WAIT LAMP LIT ON REAL PHASE DEMANDS DUMMY PHASE ; PROVIDING RF2 NOT PRESENT * PRSLMPAG=+UCPHK *.PRSLMPAF=+LCPHJ *.PRSLMPAG=+LCPHK (NOT RF2):::=.LCPHJ ; REMOVE ALL DUMMY PHASE DEMANDS IF RF2 PRESENT *=.UCPHJ *=.LCPHK *=.UCPHK ; IF THE LMU SIGNALS A RED FAIL INC 1SCRTCH30 (RF1+RF2).1SCRT241=CABLMP ; FLASH THE DFM LAMP (NOT(MODE0 EQL <8>))::.LF=1PEDFLF0 ; ANY LAMP FAIL SETS FLF23=1 *.RF1=1PEDFLF1 ; SINGLE RED FAIL SETS FLF23=2 *.RF2=1PEDFLF2 ; DOUBLE RED FAIL SETS FLF23=4 ; N.B. MULTIPLE FAILURES COULD GIVE OTHER VALUES NOT(LF).NOT(RF1)=LF1 ; ANY LAMP FAIL REPLIES LF1 NOT(RF2)=LF2 ; 2ND RED FAIL REPLIES LF2

Special Conditioning

; ADDITIONAL DETECTOR DEMANDS / EXTENSIONS ;

BZ:=+EXOB *=+EXCB

Special Conditioning Timers

imers-											
0-31]								
Val	ue	Min	Max	200ms	Description	No	Value	Min	Max	200ms	Description
		0	255			16		0	255		
		0	255			17		0	255		
		0	255			18		0	255		
		0	255	i □ i		19		0	255		
		0	255	İ 🗆 İ		20	1	0	255		Timer used to start Timer 21
		0	255			21	50	0	255		Hurry Call 0 prevent timer
		0	255			22	1	0	255		Timer used to request Hurry Call 1
		0	255			23		0	255		
		0	255	İ 🗆 İ		24		0	255		
		0	255	İ 🗆 İ		25		0	255		
		0	255	j 🗆 İ		26		0	255		
		0	255	i 🗆 i		27		0	255		
		0	255	i 🗆 i		28		0	255		
		0	255			29		0	255		
		0	255			30		0	255		
F		0	255	i 🗆 i		31		0	255		

Special Conditioning Timers

Min	Max 200ms							
Min	Max 200ms							
0		Description	No	Value	Min	Max	200ms	Description
	255	Phase F RLM delay timer	48		0	255] 🗆 [
v	255	Phase G RLM delay timer	49		0	255] 🗆 [
0	255		50		0	255] 🗆 [
0	255		51		0	255		
0	255		52		0	255		
0	255		53		0	255		
0	255		54		0	255		
0	255		55		0	255] 🗆 [
0	255		56		0	255		
0	255		57		0	255		
0	255		58		0	255		
0	255		59		0	255		
0	255		60		0	255	ļЦļ	
0	255		61		0	255	ļЦļ	
0	255		62		0	255		
0	255		63		0	255	╎└╵└	
0 0 0 0 0 0	255 255 255 255 255 255		58 59 60 61 61 62 63		0 0 0 0 0	255 255 255 255 255 255		

Special Instructions

66221							
Board	Position	Skt	Port	Type I or O	Line	Cable	Block
CPU	A	X3I	0	I	00 - 07	101	1TBG
CPU	A	X3I	1	I	08 - 15		1TBH
CPU	A	X30	11	0	88 - 91	105	1TBX
101	В	В	2	I	16 - 23	103	1TBJ
101	В	Ε	4	0	32 - 39		1TBK
101	В	С	3	I	24 - 31	103	1TBL
101	В	D	5	0	40 - 47		1TBM
102	C	В	6	I	48 - 55	103	1TBN
102	C	Е	8	0	64 - 71		1TBP
102	C	С	7	I	56 - 63	103	1TBR
102	C	D	9	0	72 - 79		1TBS

The socket X3 on the CPU pcb is the double stacked one X3I = Inner (nearest the board) X3O = Outer

The Item List is included for reference only.

Special Instructions

ST800 CONTROLLER ITEMS LIST SHEET 1 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS	Note 1:
			_	İ		Please refer to special
1			Ì	ĺ		instruction pages for
2	667/1/27000/001	Cabinet 8 Phase wired 16 Phase	1			additional information on
3	667/1/27000/002	Cabinet 24 Phase wired 32 Phase	Ì	ĺ		items marked with an '*'.
4	667/1/27001/001	Rack 8 Phase wired 16 Phase	Ì	ĺ	i i	
5	667/1/27001/002	Rack 24 Phase wired 32 Phase	i	i	i i	
6		ĺ	i	İ	i i	
17	İ		i	i	i i	
8			i	i	i i	
9			i i	i	i i	
10			i	i	i i	
1 11			i	i	i i	
12			i	i	i i	
13			i	i	i i	
14			i	i	i i	
15			i	i	i i	
16			i	i	i i	
17			i	i	i i	
18			i	i	i i	
19			i	i	i i	
20			i	i	i i	
21			i	i	i i	
22			i	i	i i	
23		1	i	i	i i	
24	667/1/27002/000	Lamp Switch Kit 8 Phase	i	i	i i	
25	667/1/27003/000	I/O Kit	2	i	i i	
26	667/1/27005/000	SDE Facility Kit	i	i	i i	
27	667/1/27004/000	Integral OTU Kit	i	i	i i	
28			i	i	i i	
29	İ		i	i	i i	
30	İ		i	i	i i	
31	İ		i	i	i i	
32	İ		i	i	i i	
33	İ		i	i	i i	
34	İ		i	i	i i	
35	İ		i	i	i i	
36	İ		i	i	i i	
37			i	i	i i	
38			i	i	i i	
39	667/1/16274/174	Configuration Eprom (Issue 4. 0)	1	i	i i	
40			i	i	i i	
İ			_i	İ	İİ	
i						
					ĺ	

Special Instructions

ST800 CONTROLLER ITEMS LIST SHEET 2 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS	
41						
41	667/1/27056/001	Manual Danel Assy (Intersection Cont)	}			
43	667/1/27056/010	Manual Panel Assy (Sigs on/off)	1		1	
44	667/1/27056/000	Manual Panel Blanking Kit	1		1	
45			i i		1	
46			i	İ	İ	Note 2:
47			i	İ	i	Ancillary Processor PLD
48	İ		i	i	İ	Variants
49	ĺ		Í	Ì	1	101 OTU & LMU
50						102 OTU Only
51						103 LMU Only
52	667/7/25171/000	Current Transformer				104 OTU & LMU + Up/Download
53						105 OUT Only + Up/DownLoad
54			1			NB Controller Has built in LMU
55			1			So LMU on Ancillary Processor
50			-			Not required included for info
5/	1		-			louiy.
50			-			
1 60			1			Note 3:
61	667/1/27000/101	Cabinet Export 8 Phase wired 16 Phase	1		1	Fit Current Transformer
62	667/1/27000/102	Cabinet Export 24 Phase wired 32 Phase	1		1	starting from position
63	667/1/27001/101	Rack Export 8 Phase wired 16 Phase	i i		1	TLB/z/16 on the first phase
64	667/1/27001/102	Rack Export 24 Phase wired 32 Phase	i	1	i	driver PCB. if more than 3
65	667/1/27002/100	Export Lamp Switch Kit	i	i	İ	sensors are called up fit the
66	667/1/27084/001	Dimming Assembly (1.5KVA)(Fit Std UK)	Í	Ì	1	4th sensor to the second
67	667/1/27084/002	Dimming Assembly (2.0KVA)				Phases driver PCB, and so on
68	667/1/27084/003	Dimming Assembly (3.0KVA)				until all sensors have been
69	667/1/27130/000	30A Controller Kit				used up.
70						TLB/b/14 - 1st sensor terminal
71	667/1/27001/310	ST800 SE Export Rack up to 8 Phase				TLB/z/16 - 2nd sensor terminal
72	667/1/27223/003	ST800 SE 8 Phase Driver No LMU				TLB/z/14 - 3rd sensor terminal
/3	667/1/2/223/403	ST800 SE 4 Phase Driver No LMU	-			TLB/Z/12 - 4th sensor terminal
1 75	1		-			TLB/Z/12 - 4th sensor terminal
1 76			-			
1 77	 667/1/27000/301	ST800 P In a Cabinet 4Ph 1 Stream DFD			1	 TLB/z/12 - 4th sensor terminal
78	667/1/27012/000	PED 2nd Stream Kit for ST800 P	1			
79	667/1/27001/300	ST800 P Rack Only 4Ph 1 Stream PED	1		1	1
1	1 , 1, 1, 2, 3, 3, 3, 5, 6, 6		1			1

Special Instructions

Configuration Complexity Number is 209

Special Instructions

LAMP MONITORING

Lamp monitoring is provided by an extenral Microsense I2LM unit. Therefore the controllers lamp monitoring facilities are not being used and the red lamp monitoring functions are provided through special conditioning as described below:-Dummy phase(s) K and L are duplicate of pedestrian phase(s) F and G. Any timing changes made to the real phase MUST be duplicated on the dummy phase. Note that the dummy phase does not need any leaving intergreens. The real ped phase is configured with a type 2 appearance code so conditioning can control when it appears and for this reason the PHD handset command MUST NOT be used for ped phase(s) F or G or J as although the stage will not appea Under normal operation when the dummy phase goes to green it will demand the real phase which will then go straight to green. However if a 1st red lamp failure exists the demand is delayed by a PIR timer to give the extra intergreen. When a 2nd red lamp failure exists the demand will never occur. If a 2nd red lamp failure occurs during the ped green the real phase will be terminated once it's minimum green time has expired. Lighting wait indicators and flashing the DFM lamp will operate as normal except that a DFM fault will cause the flashing to cease. Lamp failure indications from the Microsense I2LM do not set the normal fault log flags so the special pedestrian fault flag (FLF23) has been used instead. FLF23=1 indicates any lamp fail. FLF23=2 indicates a 1st red lamp failure. FLF23=4 indicates a 2nd red lamp failure. Multiple failures will give a combination od these values, therefore it is easier to read if displayed in binary. The I2LM fault outputs may be returned via the OTU to provide LF1 and LF2 replies.

12LM CONNECTIONS

Connect any lamp fail output to :LF 1TBR/6 - I/P61 & input common.

Connect 1st red lamp failure output to :RF1 1TBR/7 - I/P62 & input common.

Connect 2nd red lamp failure output to :RF2 1TBR/8 - I/P63 & input common.

NB. These outputs MUST be open circuit for active.

Call Cancel

	I																						
Lini	it Innut	Call	Cancel	Phase Demanded																			
No	. Name	Delay	Delay	(Unlatched Demand)																			
		,	,																				
0	AP	3	0																				
1																							
	BZ	3	0																				
2	CP	3	2	С																			
	<u> </u>	<u>۔</u>		<u> </u>																			
3	EP	3	0	E																			
4																							
	HC1	15	0																				
5	HC2	15	0																				
			Ľ																				
6		0	0																				
7																							
'		0	0																				
DET Bit Type Name Reqd BP Inv UD Mis DFM Ext Photufic SDE Pri Hc C G U LRT Bito Type Name Reqd BP Inv UD Mis DFM DFM Fit Photufic SDE Pri Hc C C G U LRT Bito 1 1 1 1 A Y Y Y A 0 00 Y 0	DET Bit Type Name Requit BP Inv UD Mso DFM Ent Physic UTC SDE Pri HC CC IG UD IG Implication 0 0 1 AX Implication A 0 00 Implication <th>Enable Check</th> <th>e Signal I boxes</th> <th>Required</th> <th></th> <th>Port N Port:</th> <th>Number &</th> <th>Туре-</th> <th></th> <th>0 0</th> <th>Inputs</th> <th>O & Output</th> <th>S</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Enable Check	e Signal I boxes	Required		Port N Port:	Number &	Туре-		0 0	Inputs	O & Output	S										
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------	-----------------------------------------------------------------------------	----------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------	---------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------
0 0 1 AX Image: Constraint of the state of t	0 0 1 AX V - - A 0 0.0 V - - 11B6 1 1 1 1 AY V - A 0 0.0 V - - 11B6 2 2 2 1 AZ V - A 0 0.0 V - - 11B6 3 3 3 1 AP V - A 0 0.0 - - 1 11B6 5 5 5 1 BXu V - A 0 0.0 - - 1 11B6 5 5 5 1 BXu V - I 0 0.0 - - 1 11B6 6 6 6 1 BYu V - I 0 0.0 - - 11B6 8	DET No	Bit No	Type I or O	Name	1	Req'd	BP	Inv	U/D Misc	DFM	DFM Group	Ext time	Phs	UTC :	Us SDE	ed By Pri HC	CC	IG	UD LR	RT	Term Block	Terminal No
1 1 I AY Image: A intermediate intermedintermediate intermediate intermediate intermediate inter	1 1 I AY I I A 0 00 I I I ITB6 2 2 2 1 AZ I I A 0 00 I I ITB6 3 3 3 I AP I A 0 00 I I ITB6 4 4 4 I BX I II II III III III III III IIII IIII IIIII IIIII IIIII IIIII IIIIII IIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIIIII IIIIIII IIIIIII IIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0	0	I	AX		\checkmark				A	0	0.0	\checkmark]	1TBG	1
2 2 1 AZ Image: A point of the state of the	2 2 1 AZ V A 0 0.0 V 1TBG 3 3 3 1 AP V A 0 0.0 V 1TBG 4 4 4 1 BX V A 0 0.0 V 1TBG 5 5 5 1 BXu V I 0 0.0 V 1TBG 6 6 6 I BY V A 0 0.0 ITBG 7 7 7 I BYu V I 0 0.0 ITBG 8	1	1	Ι	AY		\checkmark				A	0	0.0	\checkmark]	1TBG	2
3 3 I AP I I A 0 0.0 I	3 3 I AP I IBC I IBC I IBC I IBG 5 4 4 I BX I II II III IIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2	2	I	AZ		\checkmark				А	0	0.0	\checkmark								1TBG	3
4 4 I BX I	4 4 I BX IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3	3	Ι	AP		\checkmark				A	0	0.0					\checkmark				1TBG	4
5 5 1 BXu ∅ □	5 5 1 BXu Image: Constraint of the state of	4	4	I	BX		\checkmark				A	0	0.0	\checkmark								1TBG	5
6 6 I BY I I A 0 0.0 I	6 6 I BY I	5	5	Ι	BXu		\checkmark				Ι	0	0.0									1TBG	6
7 7 I BYu I 0 0.0 I I 0 0.0 I I 0 0.0 I I I I I 0 0.0 I <td< td=""><td>7 7 I BYu I 0 0.0 I IIII IIII IIIII IIIIIIIIIIIIIIIIIIIII</td><td>6</td><td>6</td><td>I</td><td>BY</td><td></td><td>\checkmark</td><td></td><td></td><td></td><td>A</td><td>0</td><td>0.0</td><td>\checkmark</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1TBG</td><td>7</td></td<>	7 7 I BYu I 0 0.0 I IIII IIII IIIII IIIIIIIIIIIIIIIIIIIII	6	6	I	BY		\checkmark				A	0	0.0	\checkmark								1TBG	7
<u>A</u> dd <u>Delete Move</u> Clear <u>U</u> sed By	Add Delete Move Clear Used By	7	7	Ι	BYu		\checkmark				I	0	0.0									1TBG	8
						J]	· · · · · · · · · · · · · · · · · · ·														
			Enable Check 0 1 2 3 4 5 6 7 7 <u>A</u> dd	Enable Signal Check boxesDET NoBit No0011223344556677	Enable Signal Required DET Bit Type 0 0 1 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1	Enable Signal Required I DET Bit Type Name 0 0 I AX 1 1 I AY 2 2 I AZ 3 3 I BX 5 5 I BX 6 6 I BY 7 7 I BY Add I Delete I	Enable Signal Required Port N DET Bit Type Name 0 0 I AX 1 1 AY I 2 2 I AZ 3 3 I BX 4 4 I BX 5 5 I BX 6 6 I BY 7 7 I BY	Enable Signal Required Port. Port. 0 DET Bit Type No I AU I AI I AI I AI I AI I AI I AI I BIT I AI I AI I AI I AI I BI I BI I AI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I BI I	Enable Signal Required Port Number & Typer Port: 0 DET No Bit No Type I or O 0 0 I AX Image: Signal Required 1 1 AX Image: Signal Required Image: Signal Required 1 1 AX Image: Signal Required Image: Signal Required Image: Signal Required 1 1 AX Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signal Required Image: Signa	Enable Signal Required Check boxes Port Number & Type DET Bit Type Name Req'd BP Inv 0 0 I AX Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes <td>Port Number & Type Port: 0 DET Bit Type Name Req'd BP Inv U/D Misc 0 0 I AX Image: Color of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t</td> <td>Enable Signal Required Check boxes Name Req'd BP Inv U/D Misc DFM DET Bit Type Name Req'd BP Inv U/D Misc DFM 0 0 I AX Image: Comparison of the temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of te</td> <td>Enable Signal Required Check boxes Port Port </td> <td>Enable Signal Required Check boxes Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: <</td> <td>Enable Signal Required Check boxes Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: <</td> <td>Enable Signal Required Check boxes Port Number & Type Port: Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute &</td> <td>Enable Signal Required Check boxes Port Number & Type Port Image: Check boxes Port Image: Check boxes Port Image: Check boxes Image: Check boxes Port Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check bo</td> <td>Enable Signal Required Port:</td> <td>Enable Signal Required Port Number & Type Port:</td> <td>Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port</td> <td>Enable Signal Required Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Por</td> <td>Port Number & Type Port: O Inputs & Outputs DET Bt Type Name Reqd BP Inv UD Msc DFM DFM Fm Pins UTC Social Pri HC C G IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>Enable Signal Reputed Port.</td>	Port Number & Type Port: 0 DET Bit Type Name Req'd BP Inv U/D Misc 0 0 I AX Image: Color of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	Enable Signal Required Check boxes Name Req'd BP Inv U/D Misc DFM DET Bit Type Name Req'd BP Inv U/D Misc DFM 0 0 I AX Image: Comparison of the temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of temperature of te	Enable Signal Required Check boxes Port Port 	Enable Signal Required Check boxes Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: <	Enable Signal Required Check boxes Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: <	Enable Signal Required Check boxes Port Number & Type Port: Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Port Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute & Oppute Impute &	Enable Signal Required Check boxes Port Number & Type Port Image: Check boxes Port Image: Check boxes Port Image: Check boxes Image: Check boxes Port Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check boxes Image: Check bo	Enable Signal Required Port:	Enable Signal Required Port Number & Type Port:	Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port Port	Enable Signal Required Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Port: Por	Port Number & Type Port: O Inputs & Outputs DET Bt Type Name Reqd BP Inv UD Msc DFM DFM Fm Pins UTC Social Pri HC C G IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Enable Signal Reputed Port.

DET Bit Type Name Reqd BP Iv U/D Misc DFM Ext Fine Fine SDE Fine CC IG UD IRE No 0 0 1 BZ 0 <td< th=""></td<>
8 0 I BZ I A 0 0.0 I I 1TBH 1 9 1 I CP I A 0 20 I I ITBH 2 10 2 I DX I I A 0 0.0 I I I ITBH 3 11 3 I DY I I A 0 0.0 I I I ITBH 3 12 4 I DZ I
9 1 I CP ∅ □
10 2 I DX Image:
11 3 I DY Image:
12 4 I DZ Image: Constraint of the state of
13 5 I EP Image: Constraint of the state of
14 6 I HC1 Image: Constraint of the state of
15 7 I HC2 I <
<u>A</u> dd <u>Del</u> ete <u>M</u> ove Clear <u>U</u> sed By

	Enable Check	e Signal boxes	Required		Port N Port:	Number &	Туре]) ()	Inputs	O & Outputs	S										
	DET No	Bit No	Type I or O	Name	9	Req'd	BP	Inv l	U/D Misc	DFM	DFM Group	Ext time	Phs	UTC	U SDE	lsed B Pri	by HC	СС	IG U	id lrt	Term Block	Terminal No
С	24	0	Ι																		1TBL	1
С	25	1	Ι																		1TBL	2
С	26	2	Ι																		1TBL	3
С	27	3	Ι	CANC	CLHC0	\checkmark				Ν		0.0					\checkmark				1TBL	4
С	28	4	Ι																		1TBL	5
С	29	5	Ι																		1TBL	6
С	30	6	Ι																		1TBL	7
С	31	7	Ι																		1TBL	8

DET Bit Type Name Requit BP Inv UD Miss DFM Ext Used By Issue By Iss		Enable Check	Signal boxes	Required		-Port N Port:	lumber &	Туре-		0 0	Inputs	O & Output	S										
48 0 1 MVD4 Image: Constraint of the state o		DET No	Bit No	Type I or O	Name		Req'd	BP	Inv	U/D Misc	DFM	DFM Group	Ext time	Phs	UTC	L SDE	Jsed B Pri	by HC	CC	IG	UD LRT	Term Block	Terminal No
49 1 I MVD6 I A 1 0.0 I I ITBN 2 50 2 I PB2F I I A 1 0.0 I I ITBN 3 51 3 I PB3F I I A 1 0.0 I I ITBN 4 52 4 I PB4G I I A 1 0.0 I I ITBN 5 53 5 I PB5G I I I I I I ITBN 6 54 6 I	С	48	0	Ι	MVD4		\checkmark				A	0	0.6							\checkmark		1TBN	1
50 2 1 PB2F Image: Constraint of the state o	С	49	1	I	MVD6		\checkmark				A	1	0.0	\checkmark								1TBN	2
51 3 I PB3F I 0.0 I I 0.0 I I 0.0 I I 0.0 I I 0.0 I I 0.0 I I 0.0 I I 0.0 I I 0.0 I I I 0.0 I I I 0.0 I	C	50	2	I	PB2F		\checkmark				A	1	0.0	\checkmark								1TBN	3
52 4 I PB4G I <td>C</td> <td>51</td> <td>3</td> <td>Ι</td> <td>PB3F</td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td>A</td> <td>1</td> <td>0.0</td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1TBN</td> <td>4</td>	C	51	3	Ι	PB3F		\checkmark				A	1	0.0	\checkmark								1TBN	4
S3 5 I PB5G IIIIN 6 IIIIN 6 S4 6 I IIIIIN 1 100 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	C	52	4	I	PB4G		\checkmark				A	1	0.0	\checkmark								1TBN	5
54 6 I Image: Clear Used By Add Delete Move Clear Used By	C	53	5	Ι	PB5G		\checkmark				A	1	0.0	\checkmark								1TBN	6
55 7 I BPA I I 2 0.0 I <td>С</td> <td>54</td> <td>6</td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	С	54	6	I																			
Add Delete Move Clear Used By	C	55	7	I	BPA		\checkmark				I	2	0.0	\checkmark			\checkmark					1TBN	8

D 5 5 0 5 0 5 0 5	DET Bi No No 16 0	t Type o I or O	Name	Roald														
) 5) 5) 5) 5	6 0			nequ	BP In	v U/D M	lisc DF	FM DFM Group	Ext time	Phs	UTC S	Use SDE P	d By ri HC	CC	IG UD	LRT	Term Block	Terminal No
) 5) 5) 5		I	BPB	\checkmark				2	0.0	\checkmark]				1TBR	1
) 5) 5	7 1	I	BPC	\checkmark				2	0.0	\checkmark							1TBR	2
⊃ 5	8 2	Ι	BPD	\checkmark				2	0.0	\checkmark							1TBR	3
	93	Ι																
) 6	60 4	I															1TBR	5
) 6	1 5	I	LF	\checkmark					0.0								1TBR	6
) 6	2 6	I	RF1	\checkmark			N		0.0								1TBR	7
) 6	37	I	RF2	\checkmark] [N		0.0								1TBR	8

Aspect Drives

• A-L	<u>О</u> М-Х	○ Y-F2									
-Phase Drive	r Card 1			Phase Driv	er Card 1			Phase Driv	er Card 2		
	Used For	Term Block	Term No		Used For	Term Block	Term No		Used For	Term Block	Term No
A - Red	Phase	1TBA	1	E - Red	Phase	1TBB	1	I - Red			
A - Amber	Phase	1TBA	2	E - Amber	Phase	1TBB	2	I - Amber			
A - Green	Phase	1TBA	3	E - Green	Phase	1TBB	3	I - Green			
B - Red	Phase	1TBA	4	F - Red	Phase	1TBB	4	J - Red			
B - Amber	Phase	1TBA	5	F - Amber	Phase	1TBB	5	J - Amber			
B - Green	Phase	1TBA	6	F - Green	Phase	1TBB	6	J - Green			
C - Red	Phase	1TBA	7	G - Red	Phase	1TBB	7	K - Red			
C - Amber	Phase	1TBA	8	G - Amber	Phase	1TBB	8	K - Amber			
C - Green	Phase	1TBA	9	G - Green	Phase	1TBB	9	K - Green			
D - Red	Phase	1TBA	10	H - Red				L - Red			
D - Amber	Phase	1TBA	11	H - Amber				L - Amber			
D - Green	Phase	1TBA	12	H - Green				L - Green			

I/O - DFM Group Timings

Input Group	State	SET A	SET B	SET C	SET D		
Group 0	Active (Mins)	60	60	60	60	State	Min Max
	InActive (Hrs)	18	18	18	18	Active (Mins)	0 255
Group 1	Active (Mins)	60	60	60	60	INACTIVE (Hrs)	0 200
	InActive (Hrs)						
Group 2	Active (Mins)	10	10	10	10		
	InActive (Hrs)						
Group 3	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 4	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 5	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 6	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 7	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		

Index

- 1 General Junction Data
 - 1.1 Administration
 - 1.2 Phases, Stages and Streams
 - 1.3 Facilities/Modes Enabled and Mode Priority Levels
 - 1.4 Phases in Stages
 - 1.5 Stages in Streams
- 2 Phases

4

- 2.1 Phase Type and Conditions
- 2.2 Opposing and Conflicting Phases
- 2.3 Timings
 - 2.3.1 Phase Minimums, Maximums, Extensions, Ped Leaving Periods
 - 2.3.2 Phase Intergreen Times
 - 2.3.3 Intergreen Handset Limits
 - 2.3.4 Phase Timing Handset Ranges
- 2.4 VA Demand and Extend Definitions
- 2.5 Phase Internal/Revertive Demands
- 3 Stage Movements
 - 3.1 Stages Prohibited, Alternative, Ignored Moves
 - 3.2 Stage Internal Demands/Pedestrian Window Times
 - 3.3 Phase Delays (No configuration data to print)
 - Modes and Facilities Detailed
 - 4.1 Fixed Time
 - 4.2 Cableless Linking
 - 4.2.1 CLF Plan(s) (No configuration data to print)
 - 4.2.2 CLF Demand Dependent Moves (No configuration data to print)
 - 4.3 UTC and MOVA
 - 4.3.1 UTC General Data
 - 4.3.2 UTC Control and Reply Data Format
 - 4.3.3 UTC Data Definitions
 - 4.3.3.1 UTC Phase Demand and Extend Definitions
 - 4.3.3.2 UTC Stage and Mode Data Definitions
 - 4.3.3.3 UTC Demand Dependent Forces (No configuration data to print)
 - 4.3.4 UTC and MOVA Detectors (No configuration data to print)
 - 4.4 Master Time Clock
 - 4.4.1 MTC Time Switch Parameters
 - 4.4.2 MTC Time Switch Parameters Array
 - 4.4.3 MTC Day Type
 - 4.4.4 MTC Timetable
 - 4.5 Priority and Emergency Vehicle
 - 4.5.1 Priority and Emergency Vehicle General
 - 4.5.2 Priority Delays, Unit Inhibits and Associations
 - 4.5.3 Priority Time Sets
 - 4.5.4 Priority Allowed and Enforced Demands
 - 4.6 Hurry Call
 - 4.7 Manual
 - 4.7.1 Manual Panel
 - 4.7.2 Manual Mode Optional Phases Appearance
 - 4.8 Extend All Red
 - 4.8.1 Extend All Red General
 - 4.8.2 Extend All Red Stage To Stage Moves
 - 4.8.3 Extend All Red Independent Intergreens
- 5 Conditioning Data
 - 5.1 Special Conditioning
 - 5.2 Special Conditioning Timers
 - 5.3 Fault Log Flags (No configuration data to print)
- 6 Special Instructions
- 7 I/O
 - 7.1 Call Cancel7.2 Inputs and Outputs
 - 7.3 Aspect Drives
 - 7.4 I/O DFM Group Timings

Administration

-General Specifications			
Customer Name	Kent County Council	Customer Order No.	
Intersection/ General Description	B2068 Old Dover Road / Nackington Road - Canterbury.	Controller/ Serial Number	
	00/000	S.T.S. /EM Number	62260 Issue 6
Controller	New O Modification	Equipment Installation by	Signal Company
Area Specifications/ Customer Drawings	2861/S/1C	Slot Cutting by	Signal Company
Specification Section		Civil Works by	Civils Contractor
Contract/Tender Ref:		Customer's Engineer	P.Clark
Quotation No.		Telephone Number	01622-666063
Works Order No.	53624		
Signal Engineer Ma Controller Options Hardware T800	rco Gmys (IF PROM Firmware Type and Issue PB800	Label as >) PROM Number Configuration Check Value ISS 18	16260 PROM Variant 0 e B9 15 59 6D Other Options KTD LO
ST950/ST900/ST750 Set	ries Cabinet Options		
Cabinet/Rack	Kit Type Option	ns O O	0 0
Cabinet/Rack Variant	Cuckoo Opi	tions	
Mains Supply Peak Lamp Current Average Lamp Power Total Average Power	240Volts50Hz4AmpsDimming Voltage160600WattsLow Inrush Transformer□	Answer Issue Edit Issue	2 Date 17/01/03 Created 25
Power feed fuse rating: re	quires 30 Amp minimum for controller, 15 Amp mi	nimum for pelican/lightly load	ded controller

Phases, Stages and Streams

	Streams		ſ		Phases	
\odot	Current Number of Streams	1			Current Total Number of Phases	10
				0	Number of Real Phases	6
					O Number of Dummy Phases	4
	-Stages		L			
0	Current Number of stages (inc. ALL-RED stages)	5		0	Number of Switched Signs	0
	⊢ Acti] on	L			
		Add At		Delet	te At	

Facilities/Modes Enabled and Mode Priority Levels

Facilities UTC Serial/Internal UTMC OTU Free-standing OTU Integral TC12 OTU Serial MOVA 13 Starting Intergreen	Master Time Clock Holiday Clock FT To Current MAX Linked Fixed Time	 Lamp Monitoring RED Lamp Monitoring Pelican/Puffin/Toucan Standalone Manual 	Extend All Red Non-UK Speed Measurement Fail to Part Time Ripple Change Fail To Hardware Flas London IMU Download To Level 3	hing
Mode Priority Part Time Emergency Vehicles Hurry Call Priority Vehicle Manual Control Manual Step On Selected FT or VA or CLF UTC CLF (Non-Base Time) CLF (Base Time) Vehicle Actuated Fixed Time			Configuration Complexity Low Medium High Main Main Medium High Main Medium High Main Medium High Main Medium Medi	aximum

Phases in Stages

		S	tages	in S	treams
0 Phase or Stage to revert to in absence of demands/extensions Startup Stage 1 Switch Off Stage	12	3 4	56	7	Note: For a Stand-Alone Stream, the reversion must be to All Red stage or Traffic stage/phase to meet the relevant standard or specification.
Standalone Pedestrian					
Stages The second seco					

In Stream

Works Order : 53624 EM Number : 62260 Engineer : Marco Gmys : B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 Intersection

Phase Type and Conditions

FlidSe	Phases A to	op O				
Phase	Title	Туре	Арр. Туре	Term. Type	Assoc. Phase	
А	Old Dover Road N/W Ahead	0 - UK Traffic	0	0 -		
В	Old Dover Road S/E	0 - UK Traffic	0	0 -		
С	Nackington Road	0 - UK Traffic	0	0 -		
D	Old Dover Road N/W Right Turn	2 - UK GreenArrow	0	2 -	A	
E	Peds across Old Dover Road S/E	1 - UK Far Side Pedestrian	2	0 -		
F	Peds across Nackington Road	1 - UK Far Side Pedestrian	2	0 -		
G	Dummy All Red	0 - UK Traffic	0	0 -		
Н	Dummy for Stage 3 Peds	1 - UK Far Side Pedestrian	0	0 -		
	Phase E dummy	1 - UK Far Side Pedestrian	1	0 -		
J	Phase F dummy	1 - UK Far Side Pedestrian	1	0 -		

1) App Types: 0 = Always Appears, 1 = Appears if dem'd prior to interstage, 2 = If dem'd, 3 = If dem'd before end of window time 2) Term Types: 0 = Term's at end of stage, 1 = Term's when Assoc phase gains R.O.W, 2 = Term's when Assoc phase loses R.O.W.

3) The H/W Fail Flash fields are for information only on all but ST900ELV Controllers. For other controllers, physical switches or links (etc.) select which aspects flash and these need to be set up manually.

Opposing and Conflicting Phases

				То	Pha	se				
	А	В	С	D	Е	F	G	Н	I	J
А		0	Co	0	Co	Co	0	0	0	0
В	0		Co	Co	Co	Co	0	0	0	0
С	Co	Со		Co	Co	Co	0	0	0	0
D	0	Co	Co		Co	Co	0	0	0	0
Е	Co	Co	Co	Co		0	0	0	0	0
F	Co	Co	Co	Co	0		0	0	0	0
G	0	0	0	0	0	0		0	0	0
Н	0	0	0	0	0	0	0		0	0
I	0	0	0	0	0	0	0	0		0
J	0	0	0	0	0	0	0	0	0	

Phase Minimums, Maximums, Extensions, Ped Leaving Periods

Phase Minimums, Maximums, Extensions, Ped Leaving Perio	Ods O Phases A to P O	
A 7 0 1.6 B 7 0 1.6 C 7 0 1.6 D 4 0 1.6 E 6 4 0.0 G 1 0 0.0 H 1 0 0.0 J 7 0 0.0 J 7 0 0.0 J 7 0 0.0 I 1 0 0.0 J 7 0 0.0 J 7 0 0.0	A B C D E F G H 20 15 15 15 0 0 0 0 25 15 15 15 0 0 0 0 0 35 15 20 15 0 0 0 0 0 20 10 35 10 0 0 0 0 0 20 10 35 10 0 0 0 0 0 20 10 35 10 0 0 0 0 0 20 10 35 10 0 0 0 0 0 11 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pre-timed

Phase Intergreen Times

Note: On a Stand Alone Pelican/Toucan/Puffin Stream the Intergreens between Pedestrian and Traffic Phases are controlled by the timings (PBT, PIT, CMX, CDY, CRD and PAR), therefore 0 should be entered for the appropriate intergreen times in grid below.

				Т	o Pha	se				
	А	В	С	D	Е	F	G	Н	I	J
A			7		9	9	3	9	9	9
В			7	5	5	8	3	5	5	8
С	5	5		5	9	5	3	5	9	5
D		6	7		9	9	3	9	9	9
Е	9	9	9	9			4			
F	13	13	13	13			8			
G	0	0	0	0	0	0		0		
Н	0	0	0	0			0			
I										
J										

From Phase

Last Modified 30/10/2015, Issue 6.2.25

Intergreen Handset Limits

Phase Timing Handset Ranges

ase Timing	g Handset Ranges		
Initia	alise Min Green Limits	7	
Phase	Min. Green Min. Max.	L Phase	Min. Green Min. Max. Min Max Local
A	3 255	Q	
3	3 255	R	Vehicle Extension
C	3 255	S	Min. 0.0 Max. 10.0
C	3 255	Т	Phase Delay
-	3 255	U	Min. 2 Max. 10
-	3 255	V	Starting I/G
ز ۱	1 255	W	Min. 4 Max. 14
1		A V	
J	0 255	Z	Min. 0 Max. 12
<		A2	
_		B2	Traffic Phase Leaving
Л		C2	
Ν		D2	Traffic Phase Red/Amber
C		E2	Min. 2 Max. 2
Ρ		F2	

VA Demand and Extend Definitions

or Unlatched demands precede the name with a #. Conditioning MUST be used to specify unlatched demands. AY AZ BPA BX BY BZ BPB CX CY CZ BPC CX CY CZ BPD CX CY CZ BPD CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ CX CX CY CZ DP CX CY CZ CZ DP C CX CY CZ CX CY CZ CZ DP CX CY CZ CZ CX CX CY CZ CZ DP CX CY CZ CZ CX CX CY CZ CZ CX CX CY CZ CX CY CZ CX<			1.4. 44			- 	_	
AY AZ BPA BX BY BZ BPB CX CY CZ BPC CX CY CZ BPD CX CY CZ BPD CX CY CZ DP CX CY CZ DP CX CY CZ CX CX CY CZ CX CX CY CZ DP CX CY CZ CX D D D D D D D D PB3E PB4E D D D PB6F PB7F D D D	For Unlatch	ed demands preceing MUST be used to	de the name with specify unlatche	a #. d demands.		5		
BX BY BZ BPB CX CY CZ BPC CX CY CZ BPD CX CY CZ DP CX CY CZ CX CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP CX CY CZ DP DY	AY	AZ		BPA	AX	AY	AZ	
CX CY CZ BPC Image: CX CY CZ Image: CX Image: CX Image: CX Image: CX Image: CX CY Image: CZ Image: CX Image: CX	BX	BY	BZ	BPB	BX	BY	BZ	
Image: Second second	СХ	CY	CZ	BPC	СХ	CY	CZ	
Image: Constraint of the second se				BPD				DP
Image: Second second								
Image: Second second					<u>i</u>			
PB3E PB4E								
PB3E PB4E Image: Constraint of the second s					i			
PB6F PB7F	PB3E	PB4E			<u>i </u>			
	PB6F	PB7F			i			

Phase Internal/Revertive Demands

-Phase Inte	ernal/Revert	ive Deman	ds												
Start-up	Vehicle Re		emands-	- 	- 	сП									
Deman	ds Inserted	When Leav	ring Manua	l and Fixed	Time Mod	es									
A ☑ □	в 🗹	c ☑	D 🗹	E 🗌	F 🗌	G 🗌	н 🗆		l 🔼						
Unlatch	ed Demand	s that Start	Max Timer	S											
A ☑	в 🗹	c ☑	D 🔽	E ☑	F ☑	G 🗌	н 🗆	I ☑	ı 🔼						
Reverti	ve Phase De	emands													
A A	B B	C C	D A	E	F	G	H		J	К	L	М	Ν	0	Ρ
Q	R	S	Т	U	V	W	Х	Y	Z	A2	B2	C2	D2	E2	F2

Stages - Prohibited, Alternative, Ignored Moves

Stages - Prohibited, Alternative, Ignored Moves

Stage Internal Demands/Pedestrian Window Times

-Stage	Intern	al De	emand	ls/Ped	lestria	n Wir	ndow ⁻	Time	s												
0		1		2		manc 3		4													
Der 0	mands	Inse 1	rted W	Vhen l 2	_eavin	g Ma 3	inual a	and F 4	ixed T	Time	<u> </u>										
	atchec	l Den	nands	that S	Start N	laxim	num Ti	imers	;		 	 	 	 	 	 	 	 	 	 	_
0		1		2		3		4													
—Win	ndow T	imes	;																		
0 0		1 0		2 0		3 0		4 0		5	6	7	8	9	10	11	12	13	14	15	
16		17		18		19		20		21	22	23	24	25	26	27	28	29	30	31	
Exc	eption	al St	ages-																		

Fixed Time

-Fixed Time																
Stage Moves & Tim	nes (Not Fi	xed Time	to Current N	/lax)												
Current Stage	0	1	2	3	4	5	6	7								
Next Stage																
Time																
Current Stage Next Stage	8	9	10	11	12	13	14	15								
Time																
Current Stage	16	17	18	19	20	21	22	23								
Next Stage																
Time																
Current Stage Next Stage	24	25	26	27	28	29	30	31								
Time																
Phases Demanded	and Exter	nded unde	r Fixed Time	e to Current	Max.											
Demand	A V	B) E	F	G	H 		J	ĸ		M	N	0	P	
Extend	\checkmark	\checkmark	\checkmark													
Demand	Q	R	s ī			W	х	Υ	Z	A2	B2	C2	D2	E2	F2	
Extend																

CLF - Demand Dependent Moves

Clear Grid Data

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

UTC General Data

Type of UTC-		
• 106) 316
	Integral OTU Add	ress
2	Number of Contro	I Words
3	Number of Reply	Words
Controller to	respond to TC bit.	
	of UTC to be disab	led by Priority and LR
	Non UTC RTC sy	nchronisation input name
RTC Synchror	nisation Times	
Clock Sync	chronise Time (UT	C TS input)
Day		Time
Time Only	,	12:00:00
Clock Conf	firm Time (UTC R1	「output)
Clock Cont	firm Time (UTC R1	Foutput)
Clock Conf Day Time Only	firm Time (UTC R1	Foutput)

UTC Control and Reply Data Format

-UTC Control and Re	eply Data Format-							
Control Words	Bit 1	Bit 2	Bit 3	_Bit 4	Bit 5	Bit 6	Bit 7	Bit 8
Word 1	F1	#F2	#F3	#F4	D2	D3	D4	DX1
Word 2	TS							
Word 3								
Word 4								
Reply Words								
Word 1	G1	G2	G3	G4	SD2	SD3	SD4	DF
Word 2	000	SP1	RR	LF1	LF2	BD1	BD2	BD3
Word 3	BD4	CC						
Word 4								
Word 5								
Word 6								
Word 7								
Word 8								
Word 9								
Word 10								
Word 11								
Word 12								
Word 13								
Word 14								

UTC Phase Demand and Extend Definitions

-Demands			(Phases A to P	0	
For Unlatch Conditionin	ed demands, preceed the na g MUST be used to specify	ame with a #. unlatched demands.	Extensions	3		
DX1			DX1			
DX1			DX1			
DX1	D4		DX1	D4		
DX1	D2		DX1	D2		
			ī <u> </u>			
]			
DX1	D3					
DX1	D3		<u> </u>			
-						

UTC Stage and Mode Data Definitions

								Mode Data Definitions	
tage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Stage	Force Bit	Green Confirm Bit	Demand Confirm Bit	Manual Mode Operative:	
)				16					
1	F1	G1		17				Manual Mode Selected:	
2	#F2	G2	SD2	18				□ G1/G2	
3	#F3		SD3	19				No Lamp Power, or Lamps Of	f due to RLM
4	#F4	G4	SD4	20				or Part Time:	
5				21					
6				22				Detector Fault:	
7				23					🗹 DF
3				24				Normal NOT selected on the	
9				25				Manual Panel:	
10				26					
11				27				RR Button Selected:	
12				28				G1/G2 RR	
13				29				If UTC Reply Confirms are requ	ired for a
4				30				Controller Fault (CF) OR for sep PP replies Conditioning must b	arate MC and
15				31					E USEU.

UTC Demand Dependent Forces

Clear Grid Data

Notes:

If no data is entered for a stage then a demand for any phases in that stage will be considered. The data specified on this screen will also change the screen CLF - Demands to Consider with Demand Dependent Stage Moves.

MTC - Time Switch Parameters

MTC - Time Switch Parameters Array

MTC - Day Type

—MTC - Day Type————————————————————————————————————							
No.	Mon	Tue	Wed	Thu	Fri	Sat	Sun
0						\checkmark	
1							\checkmark
2	\checkmark						
3		\checkmark					
4			\checkmark				
5				\checkmark			
6					\checkmark		
7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
10							
11							
12							
13							
14							
15							
15							

MTC - Timetable

-MTC - Tii	metable		View Timetable Settings]
			• 0 - 15 • 16 - 31	1 🔿 32 - 47	0 48 - 63	
No.	Day Type	Time	L Description	Function Code	Plan/ Parameter	
0	9	07:30:00	MAXSET A	2	0	Function Codes:
1	9	09:30:00	MAXSET B	2	1	0 = Isolate From CLF
2	9	15:00:00	MAXSET C	2	2	1 = Introduce a CLF Plan
3	9	18:30:00	MAXSET D	2	3	2 = Introduce a Parameter
4	0	07:30:00	MAXSET B	2	1	(Combination of event swit
5	0	19:00:00	MAXSET D	2	3	3 = Selects an Individual e
6	1	08:30:00	MAXSET B	2	1	switch to be set
7	1	18:30:00	MAXSET D	2	3	4 = Selects an Individual e switch to be cleared
8	0		PLAN 1		1	
9	0		PLAN 2		2	
10	0		PLAN 3		3	
11	0		PLAN 4		4	
12	0		ISOLATE		0	
13	0		PLAN 2		2	
14	0		PLAN 4		4	
15	0		LISOLATE			

Priority and Emergency Vehicle - General

r—Priority a	nd Emergency Vehic	cle - Ger Type Priorit	neral		DFM		DFM	Demands	Revertive Demands	Revertive Demands to Start Inhibit Timer
	Input Name	Emer P	gency E	Phase	Time (x10)	Gap Time	Self Reset	Sets 0 1 2 3	Sets 0 1 2 3	Sets 0 1 2 3
Unit 0	BPA	۲	0	A	60	4	0			
Unit 1	BPB	ullet	0	В	60	4	0			
Unit 2	BPC	ullet	Ο	С	60	4	0			
Unit 3	BPD	ullet	Ο	D	60	4	0			
Unit 4		ullet	Ο		30	4	0		\square \square \square \square	
Unit 5		ullet	Ο		30	4	0		\square \square \square \square	
Unit 6		ullet	Ο		30	4	0	$\square \square \square \square$	$\square \square \square \square$	
Unit 7		ullet	0		30	4	0		\square \square \square \square	
Inputs From Conditioning Note: Bus Priority Unit values will not be used unless a valid Input Name is specified If Bus Unit is to generate a VA demand, then input name must also be specified on VA demands screen Note: Valid values for DFM Self Reset: 1 or 0 for PB800, 0-255 for PB801 and later										
Priority - Delays, Unit Inhibits and Associations

Jnit 0 0 1 2 3 4 5 6 7 Jnit 0 Image: Constraint of the second of the		Delay Time	Priority Units Inhibited	d	Associated Priority	units
Init 0 Init 1 Init 2 Init 3 Init 4 Init 5 Init 6 Init 7 Init 5 Init 6 Init 7 Init 5 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 Init 6 Init 7 In		First Second	0 1 2 3	4 5 6 7	0 1 2	3 4 5 6 7
Init 1 I I I I I I I I I I I I I I I I I I	Jnit 0					
Init 2 Init 3 Init 4 Init 5 Init 6 Init 7 Iiii Delay Handset Range Min Max Second Delay Handset Range Min Max	Jnit 1					
Jnit 3 Jnit 4 Jnit 5 Jnit 6 Jnit 7 Imits Tirst Delay Handset Range Min Max Second Delay Handset Range Min	Jnit 2					
Jnit 4 Jnit 5 Jnit 6 Jnit 7 Handset Delay Limits	Jnit 3					
Jnit 5 Jnit 6 Jnit 7 Handset Delay Limits	Jnit 4					
Jnit 6 Jnit 7 Handset Delay Limits First Delay Handset Range Min Max Second Delay Handset Range Min Max	Jnit 5					
Jnit 7 Handset Delay Limits First Delay Handset Range Min Max Second Delay Handset Range Min Max	Jnit 6					
Handset Delay Limits First Delay Handset Range Min Max Second Delay Handset Range Min Max	Jnit 7					
	landset De irst Delay I	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	landset De irst Delay I	elay Limits Handset Range Min	Мах	Second Delay Hand	set Range Min	Мах
	andset De rst Delay ł	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	landset De irst Delay I	elay Limits Handset Range Min	Max	Second Delay Hand	set Range Min	Max
	andset De rst Delay ł	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	andset De rst Delay ł	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	landset De irst Delay I	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	landset De irst Delay I	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах
	landset De irst Delay I	elay Limits Handset Range Min	Max	Second Delay Hands	set Range Min	Мах

Priority Time Sets

-0-:	seite a Time	o Coto															
PII	ority Tim	e Sets												7			
	-Sets-	0		Priority	Unit		0	1	2	3 4	5	6	7				
	0	O_2		Maximu	m time (se	ecs)	30	30	30	30 15	5 15	15	15				
	<u>U</u> 1	<u> </u>		Extension	on time (se	ecs)	10.0	10.0	10.0	0.0 10	0.0 10.	0 10.0	10.0				
	Cop	py Set		Inhibit T	ime (secs)	120	120	120 ⁻	20 50) 50	50	50				
														_			
					Compe	nsatio	n Tim	es		_							
		A	E	C C	D	E	F	G	н	1	J						
	0																
2	2																
5	3																
5	4																
•	5						1										
	6																
	7																

Priority Units

Priority Time Sets

Sets Priority Unit 0 1 2 3 4 5 6 7	
Sets \bigcirc 0 \bigcirc 2 \bigcirc 1 \bigcirc 3 1 2 3 4 5 6 7 Maximum time (secs) 30 30 30 30 15 15 15 \bullet 1 \bigcirc 3 10.0 10.0 10.0 10.0 10.0 Copy Set 10.0 10.0 10.0 10.0 10.0 Compensation TimesCompensation Times A B C D E F G H J 0 I I I J I J	
$\begin{array}{c cccc} 0 & \bigcirc 2 \\ \hline 0 & 1 & \bigcirc 3 \end{array} & \begin{array}{c} Maximum time (secs) & 30 & 30 & 30 & 30 & 15 & 15 & 15 & 15 \\ \hline Extension time (secs) & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 & 10.0 \\ \hline Inhibit Time (secs) & 120 & 120 & 120 & 50 & 50 & 50 \\ \hline \end{array}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Copy Set Inhibit Time (secs) 120 120 120 50 50 50 Compensation Times A B C D E F G H J 0 1 1 1 1 1 1 1 1	
Compensation Times	
Compensation Times	
Compensation Times	
A B C D E F G H I J 0	

Priority Time Sets

—D-i	ority Tim	o Soto-													
Ph		e Sels													
		• 2		Priority U	nit timo (so	(cc)	0	1	2	3 4	5	6 7			
	O 1	O 3		Extension	time (se	(00)	10.0	10.0	10.0 1						
				Extension	ne (secs)	cs)	10.0	120	120 1	20 50	/	50 50			
	Co	py Set					120	120		20 00					
				С	ompe	nsatic	n Tim	es							
	_	А	В	С	D	E	F	G	H	Ι	J				
	0											ł			
nits	2											+			
ity U	3											ł			
Priori	4											1			
	5											+			
	6 7											ł			
			ļ		ļ		ļ					ļ			

Priority Time Sets

	rite Time	o Coto															
Pric	-Coto-	e Sets]			
		$\bigcirc 2$		Priority U	nit)	0	1	2	3 4	5	6	7				
	$\bigcirc 1$	• 3			i time (se	CS)	30	30	30 3	0 15	15		15				
	<u> </u>	<u> </u>		Extension	n time (se	cs)	10.0	10.0	10.0		.0 10		10.0				
	Cop	by Set		innidit i in	ne (secs)		120	120	120 1	20 50	50	50	50				
				С	ompe	nsatio	n Tim	es									
[А	В	С	D	Е	F	G	Н	I	J						
	0																
ts	1																
/ Uni	23																
iority	4																
Ē	5																
	6																
	7																
I																	

Priority - Allowed and Enforced Demands

Hurry Call

Hurry Call	Stage Called	Call Input Name	Cancel Input Name	Confirm Output Name	Delay Time	Hold Time	Prevent Time
0	2	*SCRT10	CANCLHC0		0	30	0
1	1	*SCRT12			25	7	0
2					0	0	0
3					0	0	0
4					0	0	0
5					0	0	0
6					0	0	0
7					0	0	0
Hurry Ca	III Limit Values	Min. Ma	Χ.				
Call	Delay	0 25	5				
Call	Hold	0 25	5				

Manual Panel

-Manual Panel															
Stage Butte	ons and LED)s													
Button No.	Title							Called 0	Stage 1	e for Stre 2	am 3	4	5	6	7
0	All Red St	age						0]						
1	Stage 1							1]						
2	Stage 2							2]						
3	Stage 3							3]						
4	Stage 4							4]						
5]						
6]						
7]						
General LE	Ds						ר <mark>Man</mark>	ual Mode	e Enat	ole					
	AUX	(1 /	AUX 2	AUX 3	AUX 4 (Hurry Call)	AUX 5 (Higher Priority)		Always					NOT	E: bis to on	orato Spocial
Conditioned	y 🗸	[2	\checkmark				When Ha	ndset	Plugged	l in (Note	: 1)	Con	ditioning	is required.
General Bu	uttons None	SW1	SW2	SW3	Manual Si	gnals On	10	When 'M	ND' C	ommanc	Entered	1			
Momentary						diate Signals On		e Select	Switcl	hes Disa	bled				
Dim Overrid RR		() ()	0	0	As Sta	art-Up		VA		Fixed	Time			:	

Manual Mode - Optional Phases Appearance

-Manual Mode - Optional	Phases App	earance-														
	А	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0	Р
Never Appears	0	Ο	0	0	0	0	0	0	0	0	0	0	0	0	Ο	Ο
Demand Dependant	0	0	0	0	ullet	ullet	0	0	0	0	0	0	0	0	0	0
Always Appears	۲	ullet	ullet	ullet	0	0	ullet	ullet	۲	ullet	0	0	0	0	0	0
	Q	R	S	т	U	V	W	Х	Y	Z	A2	B2	C2	D2	E2	F2
Never Appears	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ο
Demand Dependant	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0	Ο	Ο
Always Appears	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Extend All Red - General

Auto	Extend to Max			All Red Tim	nings—								
P E	Part Time Emergency Vehicle			Stream		0	1	2	3	4	5	6	7
ŀ	lurry Call .RT			Extension T	ïme	0.6							
P	Priority			Max Time		8							
N N	Manual Manual Step On			L									
L N	JTC MOVA												
C	CLF												
	/A*			* Selecting Ex	tend to	Max on VA	mode wil	I					
	-ixed lime	\checkmark		also cause Ex and Priority m	tend to odes.	Max on CL	F, UTC						
Deteo	ctors Associated wit	h All Red Exter	usion Ur	also cause Ex and Priority mo hits	tend to odes.	Max on CL	F, UTC						
Deteo Unit	ctors Associated wit	h All Red Exter	ision Ur	also cause Ex and Priority mo hits	tend to odes.	Max on CL	F, UTC						
Deteo Unit	ctors Associated wit	h All Red Exter	ision Ur	also cause Ex and Priority m hits /D6	tend to odes. Associa	Max on CL	F, UTC						The
Detec Unit	ctors Associated wit	h All Red Exter	ision Ur	also cause Ex and Priority m hits /D6	tend to odes.	Max on CL	F, UTC						The association between
Detec Unit	AR1	h All Red Exter	Ision Ur	also cause Ex and Priority me hits /D6	tend to odes. Associa	Max on CL	F, UTC						The association between detectors and
Detec Unit	AR1	h All Red Exter	Ision Ur	also cause Ex and Priority ma hits /D6	Associa	Max on CL	F, UTC						The association between detectors and extension unit must be
Detec Unit	AR1	h All Red Exter	Ision Ur	also cause Ex and Priority me hits /D6	Associa	Max on CL	F, UTC						The association between detectors and extension uni must be performed in special
Detect Unit	AR1	h All Red Exter	MV	also cause Ex and Priority me hits /D6	Associa	Max on CL	F, UTC						The association between detectors and extension unit must be performed in special conditioning.

Extend All Red - Stage To Stage Moves

Extend All Red - Independent Intergreens

Special Conditioning

; USE OF SCRATCH BITS ; ------;SCRT0 ;SCRT1 ;SCRT2 ;SCRT3 ;SCRT4 ;SCRT5 ;SCRT6 ;SCRT7 ;SCRT8 ;SCRT9 ;SCRT10 = REQUEST HURRY CALL 0 ;SCRT11 = CONFIRMATION THAT HURRY CALL 0 HAS RUN, SO AS TO ALLOW HURRY CALL 1 ;SCRT12 = REQUEST HURRY CALL 1 ;SCRT13 = NOT STAGE3 AND DEMANDS FOR PHASES I J (E F) ;SCRT14 = NOT STAGE3 AND DEMANDS FOR PHASE J (F) ;SCRT15 = NOT STAGE3 AND DEMANDS FOR PHASE I (E) ; HURRY CALL CONDITIONING ; REQUEST HURRY CALL 0 ; _____ CCTO2.CCTO3.NOT(PHASEE).NOT(PHASEF).NOT(CNDTMA1)=SCRT10 ; HURRY CALL 0 IS REQUESTED, BY SCRT10, IF ; BOTH HURRY CALL CALL CANCEL INPUTS ARE TRUE ; AND PHASE E IS NOT GREEN ; AND PHASE F IS NOT GREEN ; AND HURRY CALL PREVENT CONDITIONING TIMER 1 ; IS NOT RUNNING ; HURRY CALL 0 PREVENT PERIOD -----; IF HURRY CALL 0 IS TIMING REQUEST OR FORCING HURRY MODE IFT HRYSTT1 EOL<1> THN RUN<0> ; REPEATEDLY START CONDITIONING TIMER 0 END IFT (HRYSTT1 EQL<2>).CNDTER0 THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD AND CONDITIONING TIMER 0 RUN<1> ; HAS JUST TERMINATED THEN START CONDITIONING TIMER 1 END ; CANCEL HURRY CALL 0 ; ------IFT HRYSTT1 EQL<2> THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD THEN IFT (NOT(HC1).NOT(HC2))+(LCPHI+LCPHJ) THN ; HURRY CALL 0 IS CANCELLED IF EITHER TRUE=CANCLHC0 ; LOOPS HC1 AND HC2 ARE BOTH UNOCCUPIED END ; OR END ; PHASE I OR PHASE J (E OF F) ARE DEMANDED ; REQUEST HURRY CALL 1 ; ; HURRY CALL 1 MAY BE ENABLED/ DISABLED BY HANDSET USING THE ; CONDITIONING FACILTIY ENABLE COMMAND "CFE". ; CONTROLLER CFE0 DEFAULT VALUE IS NORMALLY "0" (DISABLED) ; WHEREAS THE REQUIRED DEFAULT STATE FOR HURRY CALL 1 IS ENABLED. ; THEREFORE IN CONDITIONING THE RESULTANT STATE OF CFE0 HAS BEEN INVERTED

Special Conditioning

```
; TO ALLOW THE DEFAULT VALUE OF "0" TO MEAN ENABLED.
;
; TO DISABLE HURRY CALL 1 SET CFE0 TO "1"
; TO ENABLE HURRY CALL 1 SET CFE0 TO "0"
:
IFT NOT(CFE0 EQL<1>) THN ; IF HURRY CALL 1 CONDITIONING IS ENABLED THEN
IFT HRYSTT1 EQL<2> THN ; IF HURRY CALL 0 IS TIMING HOLD PERIOD THEN
RUN<2>
                          ; REPEATEDLY START CONDITIONING TIMER 2
END
IFT CNDTER2 THN
                     ; IF CONDITIONING TIMER 2 HAS JUST TERMINATED THEN
                      ; SET SCRATCH BIT SCRT11 TRUE
TRUE=SCRT11
END
IFT NOT(PREVC).PHASEC.SCRT11 THN ; IF PHASE C HAS JUST GONE TO GREEN AND
TRUE=SCRT12
                                  ; SCRATCH BIT SCRT11 IS TRUE THEN
ELS
                                  ; SET SCRATCH BIT SCRT12 TRUE
FALSE=SCRT12
                                  ; OTHERWISE SET SCRATCH BIT SCRT12 TO FALSE
END
IFT PHASEB THN
                                  ; IF PHASE B IS AT GREEN THEN
FALSE=SCRT11
                                  ; RESET SCRATCH BIT SCRT11 TO FALSE
END
END
; STAGE 1 REVERSION WITH UNSATISFIED PED DEMAND
STAGE3.(LCPHI+LCPHJ).(NOT(LCPHC+UCPHC+LCPHD+UCPHD))=+LCPHB ;ALLOW REVERT TO STAGE 1 IF A PED PHASE DEMAND AT INTER
                                                         ;STAGE TO STAGE 3.
; UTC G3 REPLY BIT
IFT (NOT(NXTSTG0 EQL<3>)).LCPHI.NOT(LCPHJ) THN
    TRUE=SCRT15
ELS
  IFT (NOT(NXTSTG0 EQL<3>)).LCPHJ.NOT(LCPHI) THN
       TRUE=SCRT14
ELS
     IFT (NOT(NXTSTG0 EQL<3>)).LCPHI.LCPHJ THN
          TRUE=SCRT13
     END
  END
END
IFT FROME+FROMF THN
   FALSE=SCRT15
   FALSE=SCRT14
   FALSE=SCRT13
END
NOT(NXTSTG0 EQL<3>.((SCRT15.(NOT(SCRT14)).PHASEE)+(SCRT14.(NOT(SCRT15)).PHASEF)+(SCRT13.PHASEE.PHASEF)))=G3
MAUXSW1=MIL22
                                                ;AUX 1 LED LIT WHEN SWITCH 1 OPERATED ( dimming overide )
                                                ; AUX 2 LED LIT WHEN UTC ACTIVE
(MODE0 EOL<6>)=MIL23
(MODE0 EQL<3>)=MIL05
                                                ;AUX 3 LED LIT WHEN RUNNING CLF
```

Special Conditioning

(MODE0 EQL<13>)=MIL17	;BUS PRIORITY LIGHTS HIGHER PRIORITY LED
CCTO0=+LCPHB	;CALL CANCEL UNIT 0 INSERTS A LATCHED DEMAND FOR PHASE B
LMPON.LPSPRD.SWLMPS.Not(FLF17).NOT(STAGE1)=G1 LMPON.LPSPRD.SWLMPS.Not(FLF17).NOT(STAGE2)=G2	;LAMPS OFF AND STAGE CONFIRMS FOR UTC G1 _G2 BITS
NOT((MODE0 EQL<1>+MODE0 EQL<2>+MODE0 EQL<4>))=RR	;RR BIT REPLIES MANUAL,F.T AND VA MODES
NOT(MODE0 EQL<13>)=SP1	;SP1 BIT REPLIES WHEN IN PRIORITY MODE
NOT(BPA)=BD1 NOT(BPB)=BD2 NOT(BPC)=BD3 NOT(BPD)=BD4	;BD1 REPLIES WHEN INPUT BPA IS ACTIVE ;BD2 REPLIES WHEN INPUT BPB IS ACTIVE ;BD3 REPLIES WHEN INPUT BPC IS ACTIVE ;BD4 REPLIES WHEN INPUT BPD IS ACTIVE
NOT(LMPANY0)=LF1 NOT(LMP2RED0)=LF2	;ANY LAMP FAIL REPLIES UTC LF1 BIT. ;SECOND RED LAMP FAIL REPLIES UTC LF2 BIT.
AR1+AR1_EXT+MVD3+MVD6+SSFIX=IGEO1 AR1'+MVD3'+MVD6'+SSFIX=IGEC1	;AR1 MVD3 _MVD6 ACTIVE ;AR1 MVD3 _MVD6 CLEARED
; RTC SYNC CONFIRM SIGNAL ; ~~~~~~~~ ; CONFIRM SIGNALS AFTER SYNC TIME AS FOLLOWS -	
;SUNDAY FOR 3 SECONDS ;MONDAY FOR 5 SECONDS ;TUESDAY FOR 7 SECONDS ;WEDNESDAY FOR 9 SECONDS ;THURSDAY FOR 11 SECONDS ;FRIDAY FOR 13 SECONDS ;SATURDAY FOR 15 SECONDS	
IFT 1SCRT254.NOT CC THN TRUE=1SCRT255 END	
1SCRT254.NOT(1SCRT255)=CCC	
NOT(MODE0 EQL<8>)=+1SCRT254	
<pre>NOT((RTCDYS EQL<1>).(RTCSEC GRT<2>))=.1SCRT255 NOT((RTCDYS EQL<2>).(RTCSEC GRT<4>))=.1SCRT255 NOT((RTCDYS EQL<3>).(RTCSEC GRT<6>))=.1SCRT255 NOT((RTCDYS EQL<4>).(RTCSEC GRT<8>))=.1SCRT255 NOT((RTCDYS EQL<5>).(RTCSEC GRT<10>))=.1SCRT255 NOT((RTCDYS EQL<6>).(RTCSEC GRT<12>))=.1SCRT255 NOT((RTCDYS EQL<6>).(RTCSEC GRT<12>))=.1SCRT255 NOT((RTCDYS EQL<0>).(RTCSEC GRT<14>))=.1SCRT255</pre>	; RESET FLAG - SUNDAY ; RESET FLAG - MONDAY ; RESET FLAG - TUESDAY ; RESET FLAG - WEDNESDAY ; RESET FLAG - THURSDAY ; RESET FLAG - FRIDAY ; RESET FLAG - SATURDAY

Special Conditioning

; EXTERNAL LAMP MONITORING FACILITY ; ---------; DOUBLE RED FAIL SENDS ALL PEDESTRIAN PHASES TO RED RF2:.PHASEE=1AUXCMDE4 *.PHASEF=1AUXCMDF4 RF2:+LCPHI=+1WTCTRLE ; WAIT INDICATORS LIT IF DEMAND EXISTS *+LCPHJ=+1WTCTRLF ; FOR ASSOCIATED DUMMY PHASE(S) OR IF RF2 PRESENT ; REMOVES ALL PEDESTRIAN PHASE DEMANDS UNTIL FALSE:::=.LCPHE *=.UCPHE ; FOLLOWING BLOCK INSERTS THEM *=.LCPHF *=.UCPHF PHASEI.((NOT CNDTMA3)+(NOT RF1)).(NOT RF2)=+UCPHE ; DEMAND REAL PEDESTRIAN PHASE WHEN DUMMY REACHES ; GREEN IF RF1 ABSENT OR AFTER DELAY TIMER IF RF1 PRESENT ; DO NOT DEMAND AT ALL IF RF2 PRESENT PHASEJ.((NOT CNDTMA4)+(NOT RF1)).(NOT RF2)=+UCPHF ; DEMAND REAL PEDESTRIAN PHASE WHEN DUMMY REACHES ; GREEN IF RF1 ABSENT OR AFTER DELAY TIMER IF RF1 PRESENT ; DO NOT DEMAND AT ALL IF RF2 PRESENT RF2:+LCPHE=PRVPHE ; PREVENT PEDESTRIAN PHASES FROM APPEARING IF RF2 ; PRESENT OR IF A LATCHED DEMAND EXISTS *+LCPHF=PRVPHF ; RESET RLMU DELAY TIMERS IF ASSOCIATED DUMMY PHASES IFT (NOT PHASEI) THN ; ARE NOT AT GREEN RUN <3> END IFT (NOT PHASEJ) THN RUN <4> END (NOT RF2):::.PRSLMPAE=+UCPHI ; WAIT LAMP LIT ON REAL PHASE DEMANDS DUMMY PHASE ; PROVIDING RF2 NOT PRESENT * PRSLMPAF=+UCPHJ *.PRSLMPAE=+LCPHI *.PRSLMPAF=+LCPHJ (NOT RF2):::=.LCPHI ; REMOVE ALL DUMMY PHASE DEMANDS IF RF2 PRESENT *=.UCPHI *=.LCPHJ *=.UCPHJ ; IF THE LMU SIGNALS A RED FAIL INC 1SCRTCH30 (RF1+RF2).1SCRT241=CABLMP ; FLASH THE DFM LAMP (NOT(MODE0 EQL <8>))::.LF=1PEDFLF0 ; ANY LAMP FAIL SETS FLF23=1 *.RF1=1PEDFLF1 ; SINGLE RED FAIL SETS FLF23=2 *.RF2=1PEDFLF2 ; DOUBLE RED FAIL SETS FLF23=4 ; N.B. MULTIPLE FAILURES COULD GIVE OTHER VALUES NOT(LF).NOT(RF1)=LF1 ; ANY LAMP FAIL REPLIES LF1 NOT(RF2)=LF2 ; 2ND RED FAIL REPLIES LF2

Special Conditioning

; ADDITIONAL DETECTOR DEMANDS / EXTENSIONS ;

DX+DY+DZ=+LCPHA	;DX,	DY	OR	DZ	INSERTS	A LAT	CHE	D DEMAN	ID FOR	PHASE A	4
(DX_EXT+DY_EXT+DZ_EXT).(STAGE1):=+EXOA	;DX,	DY	OR	DZ	EXTENDS	PHASE	A	DURING	STAGE	1	
*=+EXCA											
DX_EXT+DY_EXT+DZ_EXT:=+EXOD	;DX,	DY	OR	DZ	EXTENDS	PHASE	DI	DURING	STAGE	2	
*=+EXCD											

Special Conditioning Timers

0-31 Value										
Value]								
	Min	Max	200ms	Description	No	Value	Min	Max	200ms	s Description
1	0	255		Timer used to start Timer 1	16		0	255] 🗆	
50	0	255	Т П	Hurry Call 0 prevent timer	17		0	255	į □	
1	0	255	ĪΟ	Timer used to request Hurry Call 1	18		0	255	Ī 🗆	
2	0	255	Ī Π	Phase E RLM delay timer	19		0	255	Ī 🗆	
2	0	255	Ĩ П	Phase F RLM delay timer	20		0	255] □	
	0	255	Í П		21		0	255	ĺ□	
	0	255	Í П		22		0	255	ĺ □	
	0	255	Í П		23		0	255	j 🗆	
	0	255	Í П		24		0	255	j □	
	0	255	Ī 🗆		25		0	255	Į □	
	0	255	ĪΟ		26		0	255	∫ □	
	0	255	ÍΩ		27		0	255	ĺ□	
	0	255	Ĩ П		28		0	255	ĺ□	
	0	255	Í П		29		0	255	ĺ □	
	0	255	Т П		30		0	255	Ī 🗆	
	0	255	1 🗆		31		0	255	jΟ	
	0	255			31		0	255		

Works Order : 53624 EM Number : 62260 Engineer : Marco Gmys : B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 Intersection

Special Instructions

62260							
Board	Position	Skt	Port	Type I or O	Line	Cable	Block
CPU	A	X3I	0	I	00 - 07	101	1TBG
CPU	A	X3I	1	I	08 - 15		1TBH
CPU	A	X30	11	0	88 - 91	105	1TBX
I01	В	В	2	I	16 - 23	103	1TBJ
I01	В	Ε	4	0	32 - 39		1TBK
I01	В	С	3	I	24 - 31	103	1TBL
I01	В	D	5	0	40 - 47		1TBM
IO2	C	В	6	I	48 - 55	103	1TBN
IO2	C	Е	8	0	64 - 71		1TBP
102	С	С	7	I	56 - 63	103	1TBR
102	С	D	9	0	72 - 79		1TBS

The socket X3 on the CPU pcb is the double stacked one X3I = Inner (nearest the board)

X30 = Outer

Special Instructions

ST800 CONTROLLER ITEMS LIST SHEET 1 (*I*L*)

1 Instruction pages for 2 667/1/27000/001 Cabinet 8 Phase wired 16 Phase 1 additional information on 3 667/1/27001/002 Cabinet 24 Phase wired 32 Phase 1 items marked with an '*'. 4 667/1/27001/002 Rack 8 Phase wired 32 Phase 1 items marked with an '*'. 5 667/1/27001/002 Rack 24 Phase wired 32 Phase 1 1 7 1 1 1 1 9 1 1 1 1 10 1 1 1 1 12 1 1 1 1 13 1 1 1 1
2 667/1/27000/001 Cabinet 8 Phase wired 16 Phase 1 additional information on items marked with an '*'. 4 667/1/27001/001 Rack 8 Phase wired 16 Phase items marked with an '*'. 5 667/1/27001/002 Rack 24 Phase wired 32 Phase items marked with an '*'. 6 7 8 9 9 1 1 10 11 11 11 11 11 11 12 13 14 14 14 14 14
3 667/1/27001/002 Cabinet 24 Phase wired 32 Phase Items marked with an ***. 4 667/1/27001/001 Rack 8 Phase wired 16 Phase Items marked with an ***. 5 667/1/27001/002 Rack 24 Phase wired 32 Phase Items marked with an ***. 6 7 8 9 10 11 10 11 11 11 11 11 13 13 14 14 14 14
4 667/1/27001/001 Rack 8 Phase wired 16 Phase 5 667/1/27001/002 Rack 24 Phase wired 32 Phase 6 7 7 7 7 8 9 9 9 10 10 11 12 13 14
5 667/1/2/001/002 Rack 24 Phase wired 32 Phase 6
0 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0
7 7 8 9 9 10 10 11 11 11 12 11 13 11
8 9 9 10 11 11 12 13
10 11 12 13
23
24 667/1/27002/000 Lamp Switch Kit 8 Phase
25 667/1/27003/000 170 Kit 2
26 66//1/2/005/000 SDE Facility Kit
36
37
39 667/1/16260/000 Configuration Eprom (Issue 1. 0) 1

Special Instructions

ST800 CONTROLLER ITEMS LIST SHEET 2 (*I*L*)

ITEM	DRAWING NUMBER	DESCRIPTION	QTY	TOT	REMARKS	1
41				-		
42	667/1/27056/001	Manual Panel Assy (Intersection Cont)				
43	667/1/27056/010	Manual Panel Assy (Sigs on/off)	1			
44	667/1/27056/000	Manual Panel Blanking Kit	1			
45			i i			
46			i i	i i		Note 2:
47			i	İ		Ancillary Processor PLD
48	İ		i	i		Variants
49	ĺ		ĺ	1		101 OTU & LMU
50						102 OTU Only
51						103 LMU Only
52	667/7/25171/000	Current Transformer				104 OTU & LMU + Up/Download
53			ļ			105 OUT Only + Up/DownLoad
54						NB Controller Has built in LMU
55						So LMU on Ancillary Processor
56						Not required included for info
5/						only.
50						
60						Note 3:
61	667/1/27000/101	Cabinet Export 8 Phase wired 16 Phase				Fit Current Transformer
62	667/1/27000/102	Cabinet Export 24 Phase wired 32 Phase	1			starting from position
63	667/1/27001/101	Rack Export 8 Phase wired 16 Phase	1			TLB/z/16 on the first phase
64	667/1/27001/102	Rack Export 24 Phase wired 32 Phase	i i	i i		driver PCB. if more than 3
65	667/1/27002/100	Export Lamp Switch Kit	i	İ		sensors are called up fit the
66	667/1/27084/001	Dimming Assembly (1.5KVA)(Fit Std UK)	i	i		4th sensor to the second
67	667/1/27084/002	Dimming Assembly (2.0KVA)	ĺ	1		Phases driver PCB, and so on
68	667/1/27084/003	Dimming Assembly (3.0KVA)				until all sensors have been
69	667/1/27130/000	30A Controller Kit				used up.
70			ļ			TLB/b/14 - 1st sensor terminal
71	667/1/27001/310	ST800 SE Export Rack up to 8 Phase				TLB/z/16 - 2nd sensor terminal
72	667/1/27223/003	ST800 SE 8 Phase Driver No LMU				TLB/z/14 - 3rd sensor terminal
73	667/1/27223/403	ST800 SE 4 Phase Driver No LMU				TLB/z/12 - 4th sensor terminal
74						TLB/z/12 - 4th sensor terminal
1 76	1					
	667/1/27000/201	CT800 D In a Cabinet ADh 1 Stream DED				 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
1 78	667/1/27012/000	DED 2nd Stream Kit for STRAD D				
79	667/1/27001/300	ST800 P Rack Only 4Ph 1 Stream DED				
'	00,71,2,001,300					

Special Instructions

Special Instructions

LAMP MONITORING

Lamp monitoring is provided by an extenral Microsense I2LM unit. Therefore the controllers lamp monitoring facilities are not being used and the red lamp monitoring functions are provided through special conditioning as described below:-

Dummy phase(s) I and J are duplicate of pedestrian phase(s) E and F. Any timing changes made to the real phase MUST be duplicated on the dummy phase. Note that the dummy phase does not need any leaving intergreens. The real ped phase is configured with a type 2 appearance code so conditioning can control when it appears and for this reason the PHD handset command MUST NOT be used for ped phase(s) E or F.

Under normal operation when the dummy phase goes to green it will demand the real phase which will then go straight to green. However if a 1st red lamp failure exists the demand is delayed by a PIR timer to give the extra intergreen. When a 2nd red lamp failure exists the demand will never occur. If a 2nd red lamp failure occurs during the ped green the real phase will be terminated once it's minimum green time has expired.

Lighting wait indicators and flashing the DFM lamp will operate as normal except that a DFM fault will cause the flashing to cease.

Lamp failure indications from the Microsense I2LM do not set the normal fault log flags so the special pedestrian fault flag (FLF23) has been used instead.

FLF23=1 indicates any lamp fail. FLF23=2 indicates a 1st red lamp failure. FLF23=4 indicates a 2nd red lamp failure.

Multiple failures will give a combination od these values, therefore it is easier to read if displayed in binary.

The I2LM fault outputs may be returned via the OTU to provide LF1 and LF2 replies.

12LM CONNECTIONS

Connect any lamp fail output to :LF 1TBR/6 - I/P61 & input common.

Connect 1st red lamp failure output to :RF1 1TBR/7 - I/P62 & input common.

Connect 2nd red lamp failure output to :RF2 1TBR/8 - I/P63 & input common.

NB. These outputs MUST be open circuit for active.

Call Cancel

	ancel				
			0 "	A	
	Unit	Input	Call	Cancel	Phase Demanded
	INO.	Name	Delay	Delay	(Unlatched Demand)
	٥				
	0	ВР	3	0	
	1		3	2	
	-		5	2	
	2	HC1	15	0	
				Ů	
	3	HC2	15	0	
	4		0	0	
	_				
	5		0	0	
	6				
	0		0	0	
	7				
	I		0	0	
L					

	its and C Enable Check	Jutputs Signal F boxes	Required		-Port N Port:	lumber &	Type-		0 •	Inputs	O & Output	S									
	DET No	Bit No	Type I or O	Name		Req'd	BP	Inv	U/D Misc	DFM	DFM Group	Ext time	Phs	UTC	Us SDE I	ed By Pri HC	CC	IG	UD LRT	Term Block	Terminal No
0	0	0	Ι	AX		\checkmark				A	0	0.0	\checkmark							1TBG	1
0	1	1	Ι	AY		\checkmark				A	0	0.0	\checkmark							1TBG	2
0	2	2	Ι	AZ		\checkmark				A	0	0.0	\checkmark							1TBG	3
0	3	3	Ι	BX		\checkmark				A	0	0.0	\checkmark							1TBG	4
О	4	4	Ι	BY		\checkmark				A	0	0.0	\checkmark							1TBG	5
0	5	5	I	ΒZ		\checkmark				A	0	0.0	\checkmark							1TBG	6
0	6	6	I	BP		\checkmark				A	0	0.0					\checkmark			1TBG	7
С	7	7	Ι	СХ		\checkmark				A	0	0.0	\checkmark							1TBG	8
									<u>o</u> scu b	y											

DET Bit Type Name Reqd BP Inv UD Ms DFM DFM Ext Used By Is Is Term Term Term 0 8 0 1 CY 2 1 A 0 0.0 2 1 1 1 2 9 1 1 CZ 2 1 DX 2 A 0 0.0 2 1 1 1 2 11 3 1 DY 2 - A 0 0.0 - - - 1 1 2 12 4 1 DZ 2 - A 0 0.0 - - - 1 1 3 13 5 1 DP 2 - A 0 0.0 - - - 1 1 1 1 1 1 - - 1 1 1 1 1 1 1 1 1 1 1	DET Bit Type Name Reqid BP Inv UD Miss DFM DFM Ext Used By Is <		pe O O Inputs & Outputs	Port Number & Type Port: 1	l Required	Enable Signa Check boxes	
0 1 CY Image: CY <td>0 1 CY I I A 0 0.0 I</td> <td>Used By Term Terminal UTC SDE Pri HC CC IG UD LRT Block No</td> <td>P Inv U/D Misc DFM DFM Ext Group time</td> <td>Name Req'd BP I</td> <td>Type Nam I or O</td> <td>DET Bit No No</td> <td></td>	0 1 CY I I A 0 0.0 I	Used By Term Terminal UTC SDE Pri HC CC IG UD LRT Block No	P Inv U/D Misc DFM DFM Ext Group time	Name Req'd BP I	Type Nam I or O	DET Bit No No	
9 1 i CZ Image: CZ	9 1 I CZ Image: Constraint of the state of t	ППППППППТВН 1		сү 🛛 🗆 🗌	I CY	8 0	С
10 2 I DX Image: Constraint of the state of	10 2 I DX Image: Constraint of the state of	□ □ □ □ □ □ □ □ 1TBH 2		cz 🛛 🗆 🗌	I CZ	9 1	С
11 3 I DY I	11 3 I DY Image: Constraint of the state of	□ □ □ □ □ □ □ □ 1TBH 3		DX 🛛 🗆	I DX	10 2	Э
12 4 I DZ Image: Constraint of the state of	12 4 1 DZ ∅ □	□ □ □ □ □ □ □ □ 1TBH 4		DY 🛛 🗆 [I DY	11 3	Э
13 5 I DP Image: Clear Used By 13 5 I DP Image: Clear Used By	13 5 I DP Image: Clear Used By 14 6 I AR1 Image: Clear Used By Image: Add Dejete Move Clear Used By	□ □ □ □ □ □ □ 1TBH 5	□ □ □ A 0 0.0	dz ☑ □ [I DZ	12 4	С
14 6 I AR1 Image: Constraint of the state of	14 6 I AR1 Image: AR1	□ □ □ □ □ □ □ 1ТВН 6		DP 🔽 🗌 [I DP	13 5	С
15 7 I HC1 Image: Clear Used By Add Delete Move Clear Used By	15 7 I HC1 Image: Clear Lised By Add Delete Move Clear Lised By	ППППППП1ТВН 7	□ □ □ A 0 1.4	AR1 🛛 🗌	I AR1	14 6	С
<u>A</u> dd <u>Del</u> ete <u>M</u> ove Clear <u>U</u> sed By	Add Delete Move Clear Used By	□ □ □ □ □ □ □ 1TBH 8		нс1 🔽 🗆 [I HC1	15 7	C
			Clear <u>U</u> sed By	te <u>M</u> ove	Delete	Add	

DET Bit Type Name Reqd BP Inv U/D Mix DFM Ext Fix U/D SDE Pix U/D Dist Dis Dis Dis	DET Bit Type Name Reqd BP Inv DFM DFM Ext Huse Used By I I Bit I I Bit I <thi< th=""> <thi< th=""> I</thi<></thi<>		Enable Check	e Signal F boxes	Required		Port N Port:	Number &	Type ⁻		() ()	Inputs	O & Output	S										
56 0 I BPB I	66 0 I BPB I		DET No	Bit No	Type I or O	Name	9	Req'd	BP	Inv	U/D Misc	DFM	DFM Group	Ext time	Phs	UTC	U: SDE	sed By Pri H	c cc	; IG	G UD	LRT	Term Block	Terminal No
57 1 I BPC I	57 1 i BPC Image: constraint of the state of	C	56	0	Ι	BPB		\checkmark				I	2	0.0	\checkmark								1TBR	1
58 2 I BPD I	58 2 I BPD I)	57	1	Ι	BPC		\checkmark				I	2	0.0	\checkmark								1TBR	2
59 3 I CANCLHCO Image: Cancel and the set of the set	59 3 I CANCLHCO Image: Constraint of the state of the sta	C	58	2	I	BPD		\checkmark				I	2	0.0	\checkmark								1TBR	3
60 4 I Image: Ima	60 4 I Image: Ima	C	59	3	Ι	CANC	CLHC0	\checkmark				Ν		0.0									1TBR	4
61 5 I LF Image:	b 1 LF Image: Clear Weed By b 6 Image: Clear Weed By)	60	4	Ι																		1TBR	5
62 6 I RF1 Image: Clear Lised By 63 7 I RF2 Image: Clear Lised By	C 6 I RF1 Image: Clear Used By 63 7 I RF2 Image: Clear Used By	C	61	5	I	LF		\checkmark		\checkmark		Ν		0.0									1TBR	6
63 7 I RF2 I	63 7 I RF2 Image: Normal Science of Scien	C	62	6	Ι	RF1		\checkmark		\checkmark		Ν		0.0									1TBR	7
<u>A</u> dd <u>Del</u> ete <u>M</u> ove Clear <u>U</u> sed By	Add Dejete Move Clear Used By)	63	7	Ι	RF2		\checkmark		\checkmark		Ν		0.0									1TBR	8

Aspect Drives

• A-L	<u>О</u> м-х	() Y-F2									
-Phase Drive	r Card 1			Phase Driv	ver Card 1			Phase Driv	er Card 2		
	Used For	Term Block	Term No		Used For	Term Block	Term No		Used For	Term Block	Terr No
A - Red	Phase	1TBA	1	E - Red	Phase	1TBB	1	I - Red			
A - Amber	Phase	1TBA	2	E - Amber	Phase	1TBB	2	I - Amber			
A - Green	Phase	1TBA	3	E - Green	Phase	1TBB	3	I - Green			
B - Red	Phase	1TBA	4	F - Red	Phase	1TBB	4	J - Red			
B - Amber	Phase	1TBA	5	F - Amber	Phase	1TBB	5	J - Amber			
B - Green	Phase	1TBA	6	F - Green	Phase	1TBB	6	J - Green			
C - Red	Phase	1TBA	7	G - Red				K - Red			
C - Amber	Phase	1TBA	8	G - Amber				K - Amber			
C - Green	Phase	1TBA	9	G - Green				K - Green			
D - Red	Phase	1TBA	10	H - Red				L - Red			
D - Amber	Phase	1TBA	11	H - Amber				L - Amber			
D - Green	Phase	1TBA	12	H - Green				L - Green			

I/O - DFM Group Timings

Input Group	State	SET A	SET B	SET C	SET D		
Group 0	Active (Mins)	60	60	60	60	State	Min Max
	InActive (Hrs)	18	18	18	18	Active (Mins)	0 254
Group 1	Active (Mins)	60	60	60	60	InActive (Hrs)	0 254
	InActive (Hrs)						
Group 2	Active (Mins)	10	10	10	10		
	InActive (Hrs)						
Group 3	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 4	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 5	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 6	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		
Group 7	Active (Mins)	30	30	30	30		
	InActive (Hrs)	18	18	18	18		

Index

- 1 General Junction Data
 - 1.1 Administration
 - 1.2 Phases, Stages and Streams
 - 1.3 Facilities/Modes Enabled and Mode Priority Levels
 - 1.4 Phases in Stages
 - 1.5 Stages in Streams
- 2 Phases

4

- 2.1 Phase Type and Conditions
- 2.2 Opposing and Conflicting Phases
- 2.3 Timings
 - 2.3.1 Phase Minimums, Maximums, Extensions, Ped Leaving Periods
 - 2.3.2 Phase Intergreen Times
 - 2.3.3 Intergreen Handset Limits
 - 2.3.4 Phase Timing Handset Ranges
- 2.4 VA Demand and Extend Definitions
- 2.5 Phase Internal/Revertive Demands
- 3 Stage Movements
 - 3.1 Stages Prohibited, Alternative, Ignored Moves
 - 3.2 Stage Internal Demands/Pedestrian Window Times
 - 3.3 Phase Delays (No configuration data to print)
 - Modes and Facilities Detailed
 - 4.1 Fixed Time
 - 4.2 Cableless Linking
 - 4.2.1 CLF Plan(s) (No configuration data to print)
 - 4.2.2 CLF Demand Dependent Moves
 - 4.3 UTC and MOVA
 - 4.3.1 UTC General Data
 - 4.3.2 UTC Control and Reply Data Format
 - 4.3.3 UTC Data Definitions
 - 4.3.3.1 UTC Phase Demand and Extend Definitions
 - 4.3.3.2 UTC Stage and Mode Data Definitions
 - 4.3.3.3 UTC Demand Dependent Forces
 - 4.3.4 UTC and MOVA Detectors (No configuration data to print)
 - 4.4 Master Time Clock
 - 4.4.1 MTC Time Switch Parameters
 - 4.4.2 MTC Time Switch Parameters Array
 - 4.4.3 MTC Day Type
 - 4.4.4 MTC Timetable
 - 4.5 Priority and Emergency Vehicle
 - 4.5.1 Priority and Emergency Vehicle General
 - 4.5.2 Priority Delays, Unit Inhibits and Associations
 - 4.5.3 Priority Time Sets
 - 4.5.4 Priority Allowed and Enforced Demands
 - 4.6 Hurry Call
 - 4.7 Manual
 - 4.7.1 Manual Panel
 - 4.7.2 Manual Mode Optional Phases Appearance
 - 4.8 Extend All Red
 - 4.8.1 Extend All Red General
 - 4.8.2 Extend All Red Stage To Stage Moves
 - 4.8.3 Extend All Red Independent Intergreens
- 5 Conditioning Data
 - 5.1 Special Conditioning
 - 5.2 Special Conditioning Timers
 - 5.3 Fault Log Flags (No configuration data to print)
- 6 Special Instructions
- 7 I/O
 - 7.1 Call Cancel7.2 Inputs and Outputs
 - 7.3 Aspect Drives
 - 7.4 I/O DFM Group Timings

Kent N						K	ENT (COUN	тү со	DUNC	IL							CONTROL	LER
					тол	CEI				лт л	сп	сст	-			Ν	1ANUFA	ACTURER	Siemens
kent.gov.uk					IKA		6 31	GINF			1 ЭП					т	YPE		ST800
REF NO	06	6/00	61	SITE	I	B206	68 O	ld D	ove	r Ro	ad/	St L	awr	ence	÷	TOWN		Cante	rbury
BBBBBBBBBBBBB					BVC BZ 3 Controllo	Byg Byg Y to 16 boundary Court		Linit	1.	A >			2.	>		C	3.		
store and a start of the start	a souther	ST Y				Z HC2	Y H	250 - 250				× <	B		E /			EVTEN	
APPROACH						PHASE	MIN	B/OUT	EXT	A	В	С	D	DET		DED BT	AME	DET NO	
Old Dover F	Road	NW				А	7		1.6	30	20	40	20	0,1,2	2,55	AX,AY,AZ,A	P,BPA	0,1,2	AX,AY,AZ
St Lawrence	e Roa	ld	_			В	7		1.0	20	15	15	12	4,6,8	8,56	BX,BY,BZ	Z,BPB	4,6,8	BX,BY,BZ
Old Dover F	Road	SE RT				C	4		1.0	15	10	10	10	9,5	57	CP,BF		9	
Old Dover F	Road	SE					7		1.6	60 12	40	45	20	10,11,	12,58 3	DX,DY,DZ FP	2,BPD	10,11,12 49	DX,DY,DZ MVD6
Peds acros	s St L	awren	ice Ro	ad		F	6	4	0.0	12	12	12	12	50,	51	PB2F,P	B3F	10	inv Bo
Peds acros	s Old	Dover	Road	SE		G	6	7						52,	53	PB4G,P	B5G		
Dummy All-	red					Н	1			1	1	1	1						
Dummy for	stage	3				Ι	3												
						J													
						K													
						IVI NI													
						P													
STAGE INTER	RGREE	N TIME	S								ADDIT	IONAL	PHASE	DELAY	′S	SPECIAL	_ FEA	TURES	
TO	1	2	3	4	5	6	7	8	g	10	NO	DELAY	FROM	то	BY	# Hurry	/ call	is demande	ed by both
FROM	<u> </u>		0		0	Ŭ	'	Ŭ	Ŭ	10		PHASE	STAGE	STAGE	(SECS)	HC1 ar	nd H	C2 being ac	tive
1	\gtrsim	5	8* o*	6	6						1					BX & B	SY ar	e unidirectio	nal
2	0 12	$\frac{12}{12}$	$\overset{\circ}{\checkmark}$	5 12	0 12						23					CP has FP has	5 a 3 a 3	s call, 2s ca s call :0s ca	ncel
4	5	5	7	${\succ}$	6						4					AP has	s a 39	s call. Os cal	ncel
5	5	5	8*	5	Ň						5					BZ has	a 39	s call, 0s cai	ncel
6						\ge					6								
7							\succ				7					* 1+			
o Q								\succ			ð 0			┝──┤		hv 8e in	n n e	i Call De INCI	
10										\times	10					2.0s st	eps f	or CP	
DETECTOR N	NONIT	OR (AS	SEEN	ON EN	GINEEF	RS TER	MINAL)				HUI	RRY CA	ALLS			Stage 2	2 to '	1 via all red	
IOP	7	6	5	4	3	2	1	0	HC	STAGE	DEM'D	CALL	DELAY	HOLD	P'VENT				
0	BYu	BY	BXu	BX	AP	AZ	AY	AX	1	2	#		0	15	8	M-F		0730	Max A
3	HC2	HC1	E۲	υZ		DX	CP	ВZ	2		BUS P	RIORIT	ΥΠΔΤ			IVI-⊢ M-⊏		0930 1500	Max C
6	BPA		PB5G	PB4G	PB3F	PB2F	MVD6	MVD4	UNIT	PHASE	EXT	MAX	COMP	INHIBIT	DFM(s)	M-F		1830	Max D
7	RF2	RF1	LF			BPD	BPC	BPB	0	A	10	30		120	600	Sat		0730	Max B
									1	В	10	30		120	600	Sat		1900	Max D
									2	С	10	30		120	600	Sun		0830	Max B
REVERSION	DFM		STARTIN	١G	F.T. TO	_ []	F.T. N	NODE	3	D	10	30		120	600	Sun		1830	Max D
STAGE 1		(HRS) 8	INTERGI 1	r'N (S) 2		ır Ľ⊔	ST/										TΔ		
COMMISSIONED/	INIT'LS	23/05/0)3	۷		С	MANII				1	1	<u> </u>					X31220	
CONFIG NUMBER	20	E6622	1		<u> </u>	-	PB	1	2	3	4	5	6	7	8	LINK LIS	ST		
DATA PREPARED	/ INIT'LS	19/11/	15		l	В	STAGE	1	2	3	4	5			-	BT CIRC	UIT	01227 478268	
FILE REFERENCE		06/006	1													AutoCAD) file	06-0061-01 As	Built

Otterpool Park Operational Modelling Validation Report

APPENDIX C 2018 Base LinSig Model Outputs

Full Input Data And Results Full Input Data And Results

User and Project Details

USEI anu i i Ujeci D	
Project:	
Title:	
Location:	
Additional detail:	
File name:	Old_Dover_Road_Cantebury_Base_Model_v0.1.lsg3x
Author:	
Company:	
Address:	

Network Layout Diagram

C1 - B2068 Old Dover / St Lawrence Rd, Canterbury. 06/0 Phase Diagram

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		-9999	7
В	Traffic		-9999	7
С	Ind. Arrow	D	-9999	4
D	Traffic		-9999	7
E	Traffic		-9999	7
F	Pedestrian		-9999	6
G	Pedestrian		-9999	6
н	Dummy		-9999	1
I	Dummy		-9999	3
J	Dummy		-9999	6
К	Dummy		-9999	6

Phase Intergreens Matrix

		Starting Phase											
		А	В	С	D	Е	F	G	н	I	J	к	
	А		6	5	-	6	8	8	3	8	8	8	
	В	5		5	5	6	5	7	3	7	5	7	
	С	6	5		-	6	8	5	3	8	8	5	
	D	-	5	-		6	8	5	3	8	8	5	
Terminating	Е	5	5	5	5		7	8	3	8	7	8	
Phase	F	8	8	8	8	8		-	4	-	-	-	
	G	12	12	12	12	12	-		7	-	-	-	
	Н	0	0	3	3	0	0	0		-	-	-	
	I	-	-	-	-	-	-	-	-		-	-	
	J	-	-	-	-	-	-	-	-	-		-	
	к	-	-	-	-	-	-	-	-	-	-		

Phases in Stage

Stage No.	Phases in Stage
1	A D
2	CD
3	FG
4	В
5	E

Phase Delays

Term. Stage	Start Stage	Phase	Туре	Value	Cont value		
	There are no	Phase D	elays d	efined			

Prohibited Stage Change

			To S	tag	e	
		1	2	3	4	5
From Stage	1		5	8	6	6
	2	6		8	5	6
	3	12	12		12	12
	4	5	5	7		6
	5	5	5	8	5	

C2 - B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 Phase Diagram

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
А	Traffic		-9999	7
В	Traffic		-9999	7
С	Traffic		-9999	7
D	Ind. Arrow	А	-9999	4
E	Pedestrian		-9999	6
F	Pedestrian		-9999	7
G	Dummy		-9999	1
н	Dummy		-9999	1
I	Dummy		-9999	6
J	Dummy		-9999	7

Phase Intergreens Matrix

				Sta	rting	Ph	ase	•			
		А	В	С	D	Е	F	G	н	I	J
	А		-	7	-	9	9	3	9	9	9
	В	-		7	5	5	8	3	5	5	8
	С	5	5		5	9	5	3	5	9	5
	D	-	6	7		9	9	3	9	9	9
Terminating Phase	Е	9	9	9	9		-	4	-	-	-
	F	13	13	13	13	-		8	-	-	1
	G	0	0	0	0	0	0		0	-	-
	н	0	0	0	0	-	-	0		-	-
	I	-	-	-	-	-	-	-	-		-
	J	-	-	-	-	-	-	-	-	-	

Phases in Stage

Stage No.	Phases in Stage
1	АВ
2	A D
3	EF
4	С

Stage Diagram

Phase Delays

Term. Stage	Start Stage	Phase Type		Value	Cont value									
	There are no	Phase D	elays d	There are no Phase Delays defined										

Prohibited Stage Change

		To Stage								
		1	2	3	4					
	1		5	9	7					
From Stage	2	6		9	7					
	3	13	13		13					
	4	5	5	9						

Full Input Data And Results Give-Way Lane Input Data

Junction: J1: St Lawerence	unction: J1: St Lawerence Road/Old Dover Road											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)	
J1:1/1 (Old Dover Road B2068 (WB))	J1:7/1 (Right)	1439	0	J1:3/1	1.09	To J1:7/1 (Left) To J2:3/1 (Ahead)	2.00	2.00	0.50	2	2.00	
J1:3/1 (Old Dover Road)	J1:5/1 (Right)	1439	0	J1:1/1	1.09	To J1:5/1 (Left) To J1:6/1 (Ahead)	2.00	2.00	0.50	2	2.00	

Junction: J2: Nackington Ro	Junction: J2: Nackington Road/Old Dover Road Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)	
J2:3/2 (Old Dover Road B2068 (EB))	J2:5/1 (Right)	1439	0	J2:1/1	1.09	All	3.00	-	0.50	3	3.00	

Full Input Data And Results Lane Input Data

Junction: J1: St	Lawere	ence Road	d/Old D	over R	oad							
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
J1:1/1 (Old Dover Road B2068 (WB))	ο	D	2	3	33.0	User	1840	-	-	-	-	-
J1:2/1 (The Drive)	U	E	2	3	60.0	User	1958	-	-	-	-	-
J1:3/1 (Old Dover Road)	0	A	2	3	60.0	User	1623	-	-	-	-	-
J1:4/1 (St Lawerence Road B2068)	U	В	2	3	60.0	User	1805	-	-	-	-	-
J1:5/1 (The Drive (Exit))	U		2	3	60.0	Inf	-	-	-	-	-	-
J1:6/1 (Old Dover Road (exit))	U		2	3	60.0	Inf	-	-	-	-	-	-
J1:7/1 (St Lawerence Road B2068 (Exit))	U		2	3	60.0	Inf	-	-	-	-	-	-

Junction: J2: Na	ckingto	Junction: J2: Nackington Road/Old Dover Road Junction												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)		
J2:1/1 (Old Dover Road (WB))	U	В	2	3	60.0	User	2034	-	-	-	-	-		
J2:2/1 (B2068 Nackington Road)	U	С	2	3	60.0	User	1743	-	-	-	-	-		
J2:2/2 (B2068 Nackington Road)	U	С	2	3	3.0	User	1787	-	-	-	-	-		
J2:3/1 (Old Dover Road B2068 (EB))	U	A	2	3	33.0	User	1915	-	-	-	-	-		
J2:3/2 (Old Dover Road B2068 (EB))	ο	A D	2	3	10.4	User	1787	-	-	-	-	-		
J2:4/1 (Old Dover Road (EB Exit))	U		2	3	60.0	Inf	-	-	-	-	-	-		
J2:5/1 (B2068 Nackington Road Exit)	U		2	3	60.0	Inf	-	-	-	-	-	-		

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: 'AM Peak Hour 2014'	08:00	09:00	01:00	
2: 'PM Peak Hour 2014'	17:00	18:00	01:00	

Scenario 1: '2014 AM Peak Hour' (FG1: 'AM Peak Hour 2014', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination												
		А	В	С	D	E	Tot.						
	А	0	40	102	26	122	290						
	В	43	0	71	6	162	282						
Origin	С	102	102	0	16	316	536						
	D	15	9	22	0	32	78						
	Е	53	70	180	25	0	328						
	Tot.	213	221	375	73	632	1514						

Traffic Lane Flows

Lane	Scenario 1: 2014 AM Peak Hour
Junction: J1: St Laweren	ce Road/Old Dover Road
J1:1/1	645
J1:2/1	78
J1:3/1	328
J1:4/1	290
J1:5/1	73
J1:6/1	632
J1:7/1	213
Junction: J2: Nackington	Road/Old Dover Road Junction
J2:1/1	282
J2:2/1 (with short)	536(In) 434(Out)
J2:2/2 (short)	102
J2:3/1 (with short)	423(In) 119(Out)
J2:3/2 (short)	304
J2:4/1	221
J2:5/1	375

Lane Saturation Flows

Junction: J1: St Lawerence Road/Old	Dover F	Road						
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
J1:1/1 (Old Dover Road B2068 (WB) Lane 1)	TI	his lane use	1840	1840				
J1:2/1 (The Drive Lane 1)	TI	his lane use	es a directly	1958	1958			
J1:3/1 (Old Dover Road Lane 1)	ті	his lane use	1623	1623				
J1:4/1 (St Lawerence Road B2068 Lane 1)	Т	his lane use	es a directly	entered S	aturation F	low	1805	1805
J1:5/1 (The Drive (Exit) Lane 1)			Infinite Satu	uration Flov	W		Inf	Inf
J1:6/1 (Old Dover Road (exit) Lane 1)			Inf	Inf				
J1:7/1 (St Lawerence Road B2068 (Exit) Lane 1)			Infinite Satu	uration Flov	w		Inf	Inf

Junction: J2: Nackington Road/Old	Dover R	oad Juncti	ion					
Lane	Lane Width (m)	Lane Width Gradient Nearside Lane Allowed Turning Radius (m) (m)						Flared Sat Flow (PCU/Hr)
J2:1/1 (Old Dover Road (WB) Lane 1)	т	his lane use	es a directly	2034	2034			
J2:2/1 (B2068 Nackington Road Lane 1)	т	his lane use	es a directly	low	1743	1743		
J2:2/2 (B2068 Nackington Road Lane 2)	Т	his lane use	es a directly	1787	1787			
J2:3/1 (Old Dover Road B2068 (EB) Lane 1)	Т	his lane use	es a directly	entered S	aturation F	low	1915	1915
J2:3/2 (Old Dover Road B2068 (EB) Lane 2)	Т	his lane use	es a directly	entered S	aturation F	low	1787	1787
J2:4/1 (Old Dover Road (EB Exit) Lane 1)			Infinite Satu	Inf	Inf			
J2:5/1 (B2068 Nackington Road Exit Lane 1)			Infinite Satu	uration Flov	N		Inf	Inf

Scenario 2: '2014 PM Peak Hour' (FG2: 'PM Peak Hour 2014', Plan 1: 'Network Control Plan 1') Traffic Flows, Desired Desired Flow :

	Destination											
		А	В	С	D	E	Tot.					
	A	0	62	104	14	25	205					
	В	36	0	105	20	92	253					
Origin	С	56	100	0	33	134	323					
	D	34	21	33	0	40	128					
	Е	68	155	271	46	0	540					
	Tot.	194	338	513	113	291	1449					

Traffic Lane Flows

Lane	Scenario 2: 2014 PM Peak Hour
Junction: J1: St Laweren	ce Road/Old Dover Road
J1:1/1	371
J1:2/1	128
J1:3/1	540
J1:4/1	205
J1:5/1	113
J1:6/1	291
J1:7/1	194
Junction: J2: Nackington	Road/Old Dover Road Junction
J2:1/1	253
J2:2/1 (with short)	323(In) 223(Out)
J2:2/2 (short)	100
J2:3/1 (with short)	646(In) 238(Out)
J2:3/2 (short)	408
J2:4/1	338
J2:5/1	513

Lane Saturation Flows

Junction: J1: St Lawerence Road/Old	Dover F	Road						
Lane	Lane Width (m)	Gradient	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)				
J1:1/1 (Old Dover Road B2068 (WB) Lane 1)	Т	his lane use	1840	1840				
J1:2/1 (The Drive Lane 1)	Т	his lane use	es a directly	1958	1958			
J1:3/1 (Old Dover Road Lane 1)	TI	his lane use	1623	1623				
J1:4/1 (St Lawerence Road B2068 Lane 1)	Т	his lane use	es a directly	entered S	aturation F	low	1805	1805
J1:5/1 (The Drive (Exit) Lane 1)			Infinite Satu	uration Flow	w		Inf	Inf
J1:6/1 (Old Dover Road (exit) Lane 1)	Infinite Saturation Flow						Inf	Inf
J1:7/1 (St Lawerence Road B2068 (Exit) Lane 1)			Infinite Satu	uration Flov	w		Inf	Inf

Junction: J2: Nackington Road/Old	Dover R	oad Juncti	on					
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
J2:1/1 (Old Dover Road (WB) Lane 1)	т	his lane use	es a directly	2034	2034			
J2:2/1 (B2068 Nackington Road Lane 1)	т	his lane use	es a directly	1743	1743			
J2:2/2 (B2068 Nackington Road Lane 2)	т	his lane use	es a directly	1787	1787			
J2:3/1 (Old Dover Road B2068 (EB) Lane 1)	т	his lane use	es a directly	entered S	aturation F	low	1915	1915
J2:3/2 (Old Dover Road B2068 (EB) Lane 2)	т	his lane use	es a directly	entered S	aturation F	low	1787	1787
J2:4/1 (Old Dover Road (EB Exit) Lane 1)			Infinite Sate	Inf	Inf			
J2:5/1 (B2068 Nackington Road Exit Lane 1)			Infinite Sate	uration Flow	w		Inf	Inf

Scenario 1: '2014 AM Peak Hour' (FG1: 'AM Peak Hour 2014', Plan 1: 'Network Control Plan 1') C1 - B2068 Old Dover / St Lawrence Rd, Canterbury. 06/0

Stage Timings

Stage	1	2	3	4	5
Duration	20	15	6	15	7
Change Point	0	25	45	59	86

Signal Timings Diagram

C2 - B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 Stage Sequence Diagram

Stage Timings

Stage	1	2	3	4
Duration	25	20	7	35
Change Point	0	30	55	71

Signal Timings Diagram

Full Input Data And Results **Network Layout Diagram**

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	99.4%
J1: St Lawerence Road/Old Dover Road	-	-	N/A	-	-		-	-	-	-	-	-	99.4%
1/1	Old Dover Road B2068 (WB) Left Ahead Right	0	N/A	N/A	C1:D		1	40	-	645	1840	658	98.0%
2/1	The Drive Left Ahead Right	U	N/A	N/A	C1:E		1	7	-	78	1958	158	49.3%
3/1	Old Dover Road Right Left Ahead	0	N/A	N/A	C1:A		1	20	-	328	1623	344	95.3%
4/1	St Lawerence Road B2068 Ahead Right Left	U	N/A	N/A	C1:B		1	15	-	290	1805	292	99.4%
5/1	The Drive (Exit)	U	N/A	N/A	-		-	-	-	73	Inf	Inf	0.0%
6/1	Old Dover Road (exit)	U	N/A	N/A	-		-	-	-	632	Inf	Inf	0.0%
7/1	St Lawerence Road B2068 (Exit)	U	N/A	N/A	-		-	-	-	213	Inf	Inf	0.0%
J2: Nackington Road/Old Dover Road Junction	-	-	N/A	-	-		-	-	-	-	-	-	96.8%
1/1	Old Dover Road (WB) Ahead Left	U	N/A	N/A	C2:B		1	25	-	282	2034	444	63.5%
2/1+2/2	B2068 Nackington Road Left Right	U	N/A	N/A	C2:C		1	35	-	536	1743:1787	448+105	96.8 : 96.8%
3/1+3/2	Old Dover Road B2068 (EB) Ahead Right	U+O	N/A	N/A	C2:A	C2:D	1	50	20	423	1915:1787	185+473	64.2 : 64.2%
4/1	Old Dover Road (EB Exit)	U	N/A	N/A	-		-	-	-	221	Inf	Inf	0.0%
5/1	B2068 Nackington Road Exit	U	N/A	N/A	-		-	-	-	375	Inf	Inf	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	142	319	13	25.5	34.0	1.0	60.4	-	-	-	-
J1: St Lawerence Road/Old Dover Road	-	-	37	127	5	12.9	24.3	0.3	37.6	-	-	-	-
1/1	645	645	12	127	5	5.1	9.8	0.3	15.3	85.2	17.4	9.8	27.2
2/1	78	78	-	-	-	0.9	0.5	-	1.4	65.8	2.0	0.5	2.5
3/1	328	328	25	0	0	3.5	5.9	0.1	9.4	103.4	8.8	5.9	14.7
4/1	290	290	-	-	-	3.3	8.1	-	11.4	142.0	7.9	8.1	16.0
5/1	73	73	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	632	632	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	213	213	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
J2: Nackington Road/Old Dover Road Junction	-	-	105	192	8	12.5	9.7	0.6	22.9	-	-	-	-
1/1	282	282	-	-	-	3.3	0.9	-	4.2	53.2	8.4	0.9	9.2
2/1+2/2	536	536	-	-	-	6.0	8.0	-	14.0	93.9	16.7	8.0	24.7
3/1+3/2	423	423	105	192	8	3.2	0.9	0.6	4.7	40.4	8.5	0.9	9.4
4/1	221	221	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1	375	375	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
C1 - B2068 Old Dover C2 - B2068 Old Dover	/ St Lawrence Rd, Cant Road / Nackington Roa	terbury. 06/0 ad - Canterbur	PRC for Signal ry. 06/060 PRC Over A	led Lanes (%): -1 PRC fc All Lanes (%): -1	0.5 Tot or Signalled Lanes 10.5	tal Delay for Siç (%): Total Delay (Jnalled Lanes (pc Over All Lanes(pc	cuHr): 37.55 -7.6 Total Delay cuHr): 60.44	Cycle T for Signalled I	Гіme (s): 99 Lanes (pcuHr):	22.88 Cycle T	ime (s): 1	19

Full Input Data And Results Scenario 2: '2014 PM Peak Hour' (FG2: 'PM Peak Hour 2014', Plan 1: 'Network Control Plan 1') C1 - B2068 Old Dover / St Lawrence Rd, Canterbury. 06/0

Stage Timings

Stage	1	2	3	4	5
Duration	35	10	6	15	7
Change Point	0	40	55	69	96

Signal Timings Diagram

C2 - B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 Stage Sequence Diagram

Stage Timings

Stage	1	2	3	4	
Duration	15	35	7	20	
Change Point	2	22	62	78	

Signal Timings Diagram

Full Input Data And Results **Network Layout Diagram**

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	100.7%
J1: St Lawerence Road/Old Dover Road	-	-	N/A	-	-		-	-	-	-	-	-	100.7%
1/1	Old Dover Road B2068 (WB) Left Ahead Right	о	N/A	N/A	C1:D		1	50	-	371	1840	452	82.1%
2/1	The Drive Left Ahead Right	U	N/A	N/A	C1:E		1	7	-	128	1958	144	89.1%
3/1	Old Dover Road Right Left Ahead	О	N/A	N/A	C1:A		1	35	-	540	1623	536	100.7%
4/1	St Lawerence Road B2068 Ahead Right Left	U	N/A	N/A	C1:B		1	15	-	205	1805	265	77.4%
5/1	The Drive (Exit)	U	N/A	N/A	-		-	-	-	113	Inf	Inf	0.0%
6/1	Old Dover Road (exit)	U	N/A	N/A	-		-	-	-	291	Inf	Inf	0.0%
7/1	St Lawerence Road B2068 (Exit)	U	N/A	N/A	-		-	-	-	194	Inf	Inf	0.0%
J2: Nackington Road/Old Dover Road Junction	-	-	N/A	-	-		-	-	-	-	-	-	84.7%
1/1	Old Dover Road (WB) Ahead Left	U	N/A	N/A	C2:B		1	15	-	253	2034	299	84.7%
2/1+2/2	B2068 Nackington Road Left Right	U	N/A	N/A	C2:C		1	20	-	323	1743:1787	266+119	83.8 : 83.8%
3/1+3/2	Old Dover Road B2068 (EB) Ahead Right	U+O	N/A	N/A	C2:A	C2:D	1	55	35	646	1915:1787	367+629	64.6 : 64.5%
4/1	Old Dover Road (EB Exit)	U	N/A	N/A	-		-	-	-	338	Inf	Inf	0.0%
5/1	B2068 Nackington Road Exit	U	N/A	N/A	-		-	-	-	513	Inf	Inf	0.0%

ltem	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	74	460	10	18.0	25.2	0.8	44.0	-	-	-	-
J1: St Lawerence Road/Old Dover Road	-	-	46	91	1	10.3	19.4	0.3	30.1	-	-	-	-
1/1	371	371	0	91	1	0.3	2.2	0.3	2.8	27.5	3.8	2.2	6.0
2/1	128	128	-	-	-	1.8	3.0	-	4.7	133.3	3.8	3.0	6.8
3/1	540	536	46	0	0	5.7	12.7	0.0	18.3	122.3	16.5	12.7	29.1
4/1	205	205	-	-	-	2.5	1.6	-	4.2	73.2	5.9	1.6	7.5
5/1	113	113	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	291	291	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	194	194	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
J2: Nackington Road/Old Dover Road Junction	-	-	28	369	9	7.7	5.8	0.5	13.9	-	-	-	-
1/1	253	253	-	-	-	3.2	2.5	-	5.7	80.9	7.4	2.5	10.0
2/1+2/2	323	323	-	-	-	3.7	2.4	-	6.1	68.0	8.0	2.4	10.4
3/1+3/2	643	643	28	369	9	0.8	0.9	0.5	2.1	12.0	5.1	0.9	6.1
4/1	337	337	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1	511	511	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
C1 - B2068 Old Dover C2 - B2068 Old Dover	:1 - B2068 Old Dover / St Lawrence Rd, Canterbury. 06/0 PRC for Signalled Lanes (%): -11.9 Total Delay for Signalled Lanes (pcuHr): 30.09 Cycle Time (s): 109 :2 - B2068 Old Dover Road / Nackington Road - Canterbury. 06/060 PRC for Signalled Lanes (%): 6.2 Total Delay for Signalled Lanes (pcuHr): 13.94 Cycle Time (s): 109 PRC Over All Lanes (%): -11.9 Total Delay Over All Lanes(pcuHr): 44.03 44.03												

Arcadis UK

34 York Way London N1 9AB T: +44 (0) 20 7812 2000

arcadis.com

APPENDIX D Survey Data Analysis Report (FHDC Ashford)

OTTERPOOL PARK Traffic Survey Data Analysis

MARCH 2018

CONTACTS

NICOLAS CONTENTIN Principal Transport Planner

dd +44(0) 2030 149 167 e nicolas.contentin@arcadis.com Arcadis. 34 York Way London N1 1EL

Arcadis (UK) Limited is a private limited company registered in England registration number: 1093549. Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS.

CONTENTS

1	INTRODUCTION	1
1.1	Background	1
1.2	Structure of this Note	1
2	CLASSIFIED TURNING COUNT DATA	2
2.1	Data to be Used for Assessment	2
2.2	Peak Period Analysis	4
2.3	Analysis of Flow Volumes through Adjacent Junctions	5
2.3.1	Differences between In/Out Flows of Adjacent Junctions	5
2.3.2	Traffic Flow Difference Analysis and Recommendations	8
2.4	Comparison of 2013, 2016 and 2017 survey data in adjacent junctions	22
2.5	Forecast Traffic Flows for Future Case Modelling	24
3	ORIGIN-DESTINATION (OD) SURVEYS	25
4	CONCLUSION	27

FIGURES

Figure 1 Classified Turning counts locations	2
Figure 2 Classified turning counts peak period analysis.	5

TABLES

Table 1. Summary of traffic counts	2
Table 2. Classified turning counts list	3
Table 3 Summary of classified turning counts by category.	4
Table 4 AM Peak (8-9am) Traffic flow differences for adjacent surveyed junctions.	5
Table 5 PM Peak (5-6pm) Traffic flow differences for adjacent surveyed junctions.	6
Table 6 Traffic flow difference between adjacent junctions surveyed in different years. 2	22
Table 7. Registered percentage of vehicles in the ANPR2	26

APPENDIX A

ANPR Camera locations

APPENDIX B

Classified Turning Counts (Summary)

Arcadis (UK) Limited is a private limited company registered in England registration number: 1093549. Registered office, Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK. Regulated by RICS.

1 Introduction

1.1 Background

Arcadis was appointed in August 2016 to develop a masterplan and planning application in respect of the proposed garden settlement called Otterpool Park.

The scope of Transport work required for the application is being discussed with Kent County Council, Folkstone & Hythe District Council and Highways England. Traffic modelling has been requested to assess the performance of the network and determine the effect of the Otterpool Park development proposals, for which traffic survey data in the form of classified turning counts and origin-destination data is required. Some of the required traffic survey data was collected by Folkstone & Hythe District Council on Tuesday 22nd October 2013 and Thursday 13th October 2016 and this data has been made available to Arcadis for use on the Otterpool Park assessment. The remainder of the data required for the study was collected on 29th June 2017. This report has been produced to check the quality of the data collected in 2017 and to validate the flow volumes against the 2016 data.

1.2 Structure of this Note

The remainder of this Note is structured as follows:

- Section 2Classified Turning CountsSection 3Origin-Destination Data
- Continu (Construction
- Section 4 Conclusion

2 Classified Turning Count Data

2.1 Data to be Used for Assessment

Table 1 summarises the traffic count data intended for use in the Otterpool Park traffic modelling.

Table 1. Summary of traffic counts

Data set	Dates	Locations	Details
Classified turning counts	29 th June 2017	19 sites within the study area	Fully classified turning counts, summarised in 15 minutes time intervals.
Classified turning counts	13 th October 2016	14 sites within the study area	Fully classified turning counts, summarised in 15 minutes time intervals.
TRADS	Extracted from database for June 2017 or October 2016	A number of sites on the M20	Highways England administered online database of counts collected using permanent traffic counters. Counts are available by time period and basic vehicle classification estimated by vehicle length.

Figure 1 shows the locations at which the Classified Turning Counts were undertaken and Table 2 provides a full list of these locations.

Table 2. Classified turning counts list

Site ID	Survey date	Location
1	29/06/2017	M20 J9- signalised full OD including all on/ offslips and M20 overpass
2	29/06/2017	M20 J10- signalised roundabout- full OD (including underpass)
3	29/06/2017	Hythe Road (A20)/ The Street (West)- priority- turning counts
4	29/06/2017	Hythe Road (A20)/ The Street (East)- priority- turning counts
5	29/06/2017	Hythe Road (A20)/ Mersham- priority- turning counts
6	29/06/2017	Ashford Road (A20)/ Station Road/ Church Road- priority- turning counts
7	29/06/2017	Ashford Road (A20)/ Stone Hill- priority- turning count
8	13/10/2016	Ashford Road (A20)/ Swan Lane- priority- turning counts
9	13/10/2016	M20 J11- non-signalised roundabout- full OD (including overpass)
10	13/10/2016	Ashford Road/ Sandling Road- priority- turning counts
11	29/06/2017	M20 J11A- priority full OD required including all on/ offslips and M20 underpass
12	13/10/2016	Eurotunnel entry
13	13/10/2016	Eurotunnel exit
14	29/06/2017	M20 J12- priority full OD required including all on/ offslips and M20 overpass
15	29/06/2017	M20 J13- priority full OD required including all on/ offslips and M20 overpass
16	13/10/2016	White Horse Hill / A20 EB slips / A260 / A260 Spitfire Way
17	13/10/2016	A20 WB slips / Alkham Valley Road
18	13/10/2016	A260 Canterbury Road / Alkham Valley Road
19	13/10/2016	A20 Ashford Road/ B2067 Otterpool Lane- signalised junction- turning counts
20	13/10/2016	B2067 Otterpool Lane/ Aldington Road- priority- turning counts
21	13/10/2016	Aldington Road/ Stone Street- priority- turning counts
22	13/10/2016	Aldington Road/ Lympne Hill- priority- turning counts
23	29/06/2017	A20 Ashford Road/ A261 Hythe Road/Stone Street- priority- turning counts
24	29/06/2017	A20 Ashford Road/ Stone Street- priority- turning counts
25	13/10/2016	A20 Ashford Road roundabout
26	29/06/2017	A20 Ashford Road/ A20 J11 offslip- priority- turning counts
27	29/06/2017	A261 London Road/ Barrack Hill- priority- turning counts
28	29/06/2017	A259/ Dymchurch Road/ Military Road gyratory- signalised- full OD
29	29/06/2017	A259 Prospect Road / Stade Street – priority – turning counts
30	29/06/2017	A259 Prospect Road/ A259 Seabrook Road/ Station Road/ High Street- priority roundabout- full OD
31	22/10/2013	A20 Cheriton Interchange / B2064 Cheriton High Street
32	29/06/2017	B2064 Cheriton High street / B2063 Risborough Lane – priority – turning counts
33	29/06/2017	B2064 Cheriton High street / A2034 Cherry Garden avenue - priority - turning counts

2.2 Peak Period Analysis

A peak period analysis was carried out by combining counts for all the sites where classified turning counts were collected then producing total hourly flows (sum of the preceding four 15-minute periods). Table 3 and Figure 2 show the results of these calculations. The table and figure show that the AM and PM peak flow hours were observed to be 08:00-09:00, with a total flow of 60,428 vehicles/hour, and 17:00-18:00, with a total flow of 62,521 vehicles/hour, respectively.

Table 3 Summary of classified turning counts by category.

Time		HOURLY FLOWS										
PERIOD	(Hour beginning)	Car	Taxi	LGV	OGV 1	OGV 2	Bus	Coach	MCY	РСҮ	TOTAL	Only motorised
	07:00	35,628	4	7,507	948	1,149	279	365	326	109	46,315	46,206
	07:15	41,688	4	7,855	1,007	1,103	309	400	316	103	52,785	52,682
	07:30	46,670	4	7,695	1,124	1,092	300	398	317	90	57,690	57,600
	07:45	49,727	4	7,325	1,239	1,071	259	398	296	68	60,387	60,319
AM	08:00	50,382	8	6,728	1,298	1,061	247	419	285	71	60,499	60,428
	08:15	47,750	16	6,376	1,341	1,091	220	405	274	61	57,534	57,473
	08:30	43,788	19	6,134	1,349	1,196	243	404	236	69	53,438	53,369
	08:45	38,681	23	5,933	1,285	1,174	228	388	242	74	48,028	47,954
	09:00	34,639	22	5,803	1,333	1,196	234	385	222	111	43,945	43,834
	16:00	45,692	9	7,390	842	972	229	383	460	80	56,057	55,977
	16:15	48,534	7	7,215	781	958	224	361	483	92	58,655	58,563
	16:30	51,190	5	6,912	654	889	216	330	482	102	60,780	60,678
	16:45	53,046	1	6,442	546	888	227	295	495	109	62,049	61,940
РМ	17:00	54,260	2	5,861	497	862	232	278	529	125	62,646	62,521
	17:15	51,968	2	5,131	464	827	220	282	507	134	59,535	59,401
	17:30	48,408	2	4,467	457	858	222	280	437	139	55,270	55,131
	17:45	43,992	1	3,825	420	829	205	270	405	142	50,089	49,947
	18:00	39,956	-	3,298	377	796	171	233	391	134	45,356	45,222

Figure 2 Classified turning counts peak period analysis.

2.3 Analysis of Flow Volumes through Adjacent Junctions

2.3.1 Differences between In/Out Flows of Adjacent Junctions

A comparison of traffic flow volumes through adjacent junctions was carried out among the locations previously presented in Figure 1. The flow into the two junctions in each direction has been compared to the flow out of the junctions. Variances in flows were to be expected due to the date difference among some of the surveys and results are presented in Table 4 and Table 5.

Table 4 AM Peak (8-9am) Traffic flow differences for adjacent surveyed junctions.

2-3	WB	EB
IN	797	420
OUT	798	435
Diff	0%	4%

2-4	WB	EB
IN	876	695
OUT	876	660
Diff	0%	-5%

4-5	WB	EB
IN	611	548
OUT	627	522
Diff	3%	-5%

23-24	NB	SB
IN	723	647
OUT	724	646
Diff	0%	0%

11-14	NB	SB
IN	605	541
OUT	412	606
Diff	-32%	12%

32-33	WB	EB
IN	332	537
OUT	474	562
Diff	43%	5%

22-21	EB	WB
IN	189	272
OUT	182	310
Diff	-4%	14%

10-11	EB	WB
IN	139	101
OUT	101	91
Diff	-27%	-10%

14-31	EB	WB
IN	1126	927
OUT	1135	1117
Diff	1%	20%
6-5	WB	EB
------	------------	------
IN	408	449
OUT	528	380
Diff	29%	-15%

6-7	WB	EB
IN	319	239
OUT	297	209
Diff	-7%	-13%
28-27	WB	EB
28-27 IN	WB 584	EB 537
28-27 IN OUT	WB 584 573	EB 537 517

28-29	WB	EB
IN	434	901
OUT	425	891
Diff	-2%	-1%

30-29	WB	EB
IN	565	826
OUT	522	785
Diff	-8%	-5%

8-7	EB	WB
IN	284	397
OUT	290	374
Diff	2%	-6%

8-19	EB	WB
IN	258	266
OUT	254	314
Diff	-2%	18%
20-19	SB	NB
20-19 IN	SB 245	NB 190
20-19 IN OUT	SB 245 98	NB 190 196

20-21	EB	WB
IN	92	183
OUT	80	136
Diff	-13%	-26%

23-21	NB	SB
IN	175	141
OUT	288	157
Diff	65%	11%

32-31	EB	WB
IN	568	580
OUT	477	637
Diff	-16%	10%

26-9	NB	SB
IN	975	826
OUT	928	869
Diff	-5%	5%
24-25	NB	SB
24-25 IN	NB 727	SB 713
24-25 IN OUT	NB 727 728	SB 713 662

26-25	NB	SB
IN	980	920
OUT	975	964
Diff	-1%	5%

Table 5 PM Peak (5-6pm) Traffic flow differences for adjacent surveyed junctions.

2-3	WB	EB
IN	472	647
OUT	457	647
Diff	-3%	0%

2-4	WB	EB
IN	827	823
OUT	824	844
Diff	0%	3%

4-5	WB	EB
IN	486	698
OUT	504	654
Diff	4%	-6%

6-5	WB	EB
IN	371	577
OUT	445	526
Diff	20%	-9%

23-24	NB	SB	
IN	693	766	
OUT	693	766	
Diff	0%	0%	

11-14	NB	SB
IN	502	411
OUT	471	624
Diff	-6%	52%

32-33	WB	EB
IN	351	685
OUT	533	617
Diff	52%	-10%

8-7	EB	WB
IN	431	283
OUT	412	315
Diff	-4%	11%

22-21	EB	WB
IN	331	122
OUT	309	137
Diff	-7%	12%

10-11	EB	WB
IN	88	72
OUT	75	64
Diff	-15%	-11%

14-31	EB	WB
IN	1358	1083
OUT	1208	1135
Diff	-11%	5%

32-31	EB	WB
IN	746	663
OUT	685	618
Diff	-8%	-7%

6-7	WB	EB	8-19	EB	WB	2
IN	268	372	IN	313	258	I
OUT	294	391	OUT	271	271	(
Diff	10%	5%	Diff	-13%	5%	
28-27	WB	EB	20-19	SB	NB	
IN	460	658	IN	125	90	
OUT	453	636	OUT	145	323	
Diff	-2%	-3%	Diff	16%	259%	
28-29	WB	EB	20-21	EB	WB	
IN	610	936	IN	147	104	
OUT	604	936	OUT	140	75	
Diff	-1%	0%	Diff	-5%	-28%	
30-29	WB	EB	23-21	NB	SB	
IN	700	774	IN	96	269	
OUT	700	826	OUT	140	254	

26-9	NB	SB
IN	846	986
OUT	744	1020
Diff	-12%	3%

24-25	NB	SB
IN	720	732
OUT	678	767
Diff	-6%	5%

26-25	NB	SB
IN	802	871
OUT	846	856
Diff	5%	-2%

 OUT
 700
 826

 Diff
 0%
 7%
 Diff
 46%
 -6%

 Following best practice guidelines, surveys collected on the same date with flow differences above 5% have been subject to a detailed analysis in section 2.3.2. There are no guideline stating a threshold flow difference for traffic surveys done on a different day however we decided to use a 15% threshold based on Arcadis best practice. This 15% threshold allow to identify gaps within the traffic survey which need to be addressed.

2.3.2 Traffic Flow Difference Analysis and Recommendations

This section presents a detailed analysis of the traffic surveys where the difference between in and out flows recorded through adjacent junctions is greater than 15%. Recommendations are also given in regard to the actions involved in the modelling process.

2.3.2.1 Junctions 22-21

Both junctions were surveyed on October 13th 2016.

The difference could be explained by the presence of a residential access road (Octavian Drive). There is no vehicle access between Aldington Road and Berwick Lane (Pedestrian only).

Modelling Recommendation: A zone near Octavian Drive can be added to represent flows coming in and out of the residential area.

2.3.2.2 Junctions 11-14

Both junctions were surveyed on June 29th 2017.

The difference is likely to be explained by the presence of one of the Terminal Service Roads of the Eurotunnel, providing access to one of the main staff buildings and car parks.

Modelling Recommendation: A new link (Terminal Service Road) and zone (Car park) can be added to the current network in order to represent the traffic generated/attracted by the buildings and car parks.

г

2.3.2.3 Junctions 10-11

			Blue House La	Ashford Rd			Fish Pond	011
AM 10-11	EB 139	WB 101	M20	PM 10-11 IN	EB 88	WB 72		
OUT	101	91		OUT	75	64		
DIff	-21%	-10%		DIff	-15%	-11%		

Site 10 was surveyed on October 13th 2016 and Site 11 was surveyed on June 29th 2017.

The westbound difference could be explained by the slip road connecting to the Eurotunnel entrance from site 11. However, there are no relevant intermediate junctions between the two sites in the eastbound flow, which suggests that the flow difference could be attributed by the date difference between the two traffic surveys.

Modelling Recommendation: A new zone can be created to represent the Eurotunnel entrance in regards of the westbound flow difference. In terms of the eastbound flow difference, both sets of data (eastbound flows from the two surveys) should be growth separately assuring flows are balanced in the baseline scenario year.

2.3.2.4 Junctions 32-33

Both junctions were surveyed on June 29th 2017.

This is mainly a residential area with a railway station (Folkestone West) on Station Road, which is between the two surveyed junctions. The difference could be attributed to the traffic dynamic created by the presence of the railway station and the several access roads to residential developments in the vicinity of the junctions.

Modelling Recommendation: Two zones can be created; one zone south of Cheriton Road to represent the flow from/to the railway station and the residential developments south of the main road, and another zone north of Cheriton Road to represent the residential developments on that side of the main road.

2.3.2.5 Junctions 14-31

Site 31 was surveyed on October 22nd 2013 and Site 14 was surveyed on June 29th 2017.

The only plausible reason for the given gap is the date difference between the surveys (more than 3 years).

Modelling Recommendation: Both sets of data will be growth separately making sure flows are balanced in the baseline scenario year. No further action to be taken.

2.3.2.6 Junctions 6-5

Both junctions were surveyed by on June 29th 2017.

The difference could be explained by the presence of an alternative route for the residents of Brabourne Lees travelling west; they could use The Ridgeway to access/exit the A20 instead of going through the A20/Church Road junction.

Modelling Recommendation: A new zone can be created to represent the traffic flow using the alternative route.

2.3.2.7 Junctions 32-31

Site 31 was surveyed on October 22nd 2013 and Site 32 was surveyed on June 29th 2017.

Apart from the date difference (more than 3 years) there are two roads that could potentially explain the flow differences; Firs Lane provides access to a home, garden and goods retailer with nearly 100 parking spaces, and Weymouth Road, provides access to several residential developments north of site 31.

Modelling Recommendation: A single zone north of the site 31 can be added to represent both; the residential area and the retail centre in/out traffic flows.

2.3.2.8 Junctions 8-19

Both junctions were surveyed on October 13th 2016.

The difference could be explained by the presence of a series of small residential developments between the two junctions.

Modelling Recommendation: A single zone with a linked to either way of the A20 can be added to represent the traffic flows from/to the residential area.

2.3.2.9 Junctions 20-19

Both junctions were surveyed on October 13th 2016.

The difference could be explained by the presence the Lympne Industrial Park between the two junctions attracting trips in the AM period and generating them in the PM.

Modelling Recommendation: A zone can be added to represent the main entrance/exit of the Lympne Industrial Park.

2.3.2.10 Junctions 20-21

Both junctions were surveyed on October 13th 2016.

There are two places between the two junctions that could potentially attract trips in both periods. A road access to the Port Lympne mansion which is now a hotel and a conference centre near site 20 and a residential development on beacon way, near site 21 with approximately 40 dwellings.

Modelling Recommendation: A zone between site 20 and site 21 can be added to represent the flows entering/exiting the residential development and the Port Lympne Hotel.

2.3.2.11 Junctions 23-21

Site 21 was surveyed on October 13th 2016 and Site 23 was surveyed on June 29th 2017.

Even though part of the difference could be explained by the date difference, there are 4 access roads to at least 100 dwellings between the two junctions.

Modelling Recommendation: A single zone linked to either way of Stone Street can be added to represent the traffic flows from/to the residential area.

2.3.2.12 Junctions 6-7

Both junctions were surveyed by on June 29th 2017.

The difference could be explained by the presence of a series of secondary roads providing access to small settlements both sides of the A20.

Modelling Recommendation: A single zone linked to either way of the A20 can be added to represent the traffic flows leaving/entering the A20.

2.3.2.13 Junctions 4-5

Both junctions were surveyed by on June 29th 2017.

The difference could be explained by the presence of a series of rural access roads both sides of the Hythe Road.

Modelling Recommendation: Given the small differences in vehicles, there is no need to create a new zone among the two junctions, however, special care should be taken during the calibration process. The difference between the two junctions is likely to drop because of the planning closure of the junction Highfield Lane / A20 due to the M20 Junction 10a construction works.

2.3.2.14 Junctions 30-29

Both junctions were surveyed by on June 29th 2017.

The difference could be explained by the presence of a series of residential access roads north side of Prospect Road and an Aldi supermarket car park.

Modelling Recommendation: Based on the short number of vehicles "lost" between the two junctions, there is no need to create a new zone, however, special care should be taken during the calibration process.

2.4 Comparison of 2013, 2016 and 2017 survey data in adjacent junctions

Table 6 presents an additional analysis between adjacent junctions surveyed in different years, regardless of the difference percentage.

Table 6 Traffic flow difference between adjacent junctions surveyed in different years.

Link	Site Code	Survey Date	Traffic flow	AM (08:00	- 09:00)	PM (17:0	0 - 18:00)	Observation				
	•		Direction of Flow	EB	WB	EB	WB					
	7	20/06/2017	In	284	-	431	-					
	1	29/00/2017	Out	-	374	-	315	The differences are relatively marginal, with no relevant				
7-8	0	12/10/2016	In	-	397	-	283	intermediate junctions between the two sites.				
	0	13/10/2010	Out	290	-	412	-					
			Difference	-2.1%	-5.8%	-4.4%	-10.2%					
			Direction of Flow	NB	SB	NB	SB					
	00 00		In		141		269					
	23	29/00/2017	Out	288		140		As explained in section 2.3.2.13, along with the date				
23-21	21	13/10/2016	In	175		96		dwellings between the two junctions.				
	21		Out		157		254					
			Difference	64.6%	-10.2%	45.8%	5.9%					
			Direction of Flow	EB	WB	EB	WB					
	11	29/06/2017	In		101		72	The Westbound (WB) difference could be explained by				
			Out	101		75		the slip road connecting to the Eurotunnel entrance from				
11-10	10	13/10/2016	In	139		88		junctions between the two sites in the Eastbound (EB)				
	10	13/10/2010	Out		91		64	flow				
			Difference	-27.3%	11.0%	-14.8%	12.5%					
			Direction of Flow	EB	WB	EB	WB					
	14	20/06/2017	In	1126		1358						
	14	29/00/2017	Out		1117		1135	The only plausible reason for the given difference is the				
14-31	21	22/10/2012	In		927		1083	date difference between the surveys (more than 3 years).				
	31	22/10/2013	Out	1135		1208						
			Difference	-0.8%	20.5%	-11.0%	-4.6%					

Link	Site Code	Survey Date	Traffic flow	AM (08:00	- 09:00)	PM (17:00 - 18:00)		Observation			
	-		Direction of Flow	EB	WB	EB	WB				
	22	20/06/2017	In		580		663	Apart from the date difference (more than 3 years) there are two roads that could potentially explain the flow			
	52	29/00/2017	Out	477		685		differences; Firs Lane provide access to the "range", a			
32-31	31	22/10/2013	In	568		746		home, garden & goods retailer with nearly 100 park			
	51	22/10/2013	Out		637		618	several residential developments north of the B2064			
			Difference	-16.0%	-8.9%	-8.2%	7.3%				
			Direction of Flow	NB	SB	NB	SB				
	26	29/06/2017	In	975		846					
	20	29/00/2017	Out		869		1020	With no evident developments between the two			
26-9	Q	13/10/2016	In		826		986	is the date difference between the surveys			
	3		Out	928		744					
			Difference	5.1%	5.2%	-12.1%	-3.3%				
			Direction of Flow	NB	SB	NB	SB				
	24	29/06/2017	In	727		720		With no intermediate junctions between the two sites and			
	<u> </u>		Out		662		767	a distance less than 200 metres amongst the two			
24-25	25	13/10/2016	In		713		732	junctions. It is suggested that the flow difference is			
	20	13/10/2010	Out	728		678					
			Difference	-0.1%	-7.2%	-5.8%	-4.6%				
			Direction of Flow	NB	SB	NB	SB				
	26	29/06/2017	In		920		871	With no intermediate junctions between the two sites and			
	20	23/00/2017	Out	975		846		a distance less than 200 metres amongst the two			
26-25	25	13/10/2016	In	980		802		junctions. It is suggested that the flow difference is			
	25	13/10/2010	Out		964		856				
			Difference	-0.5%	-4.6%	5.5%	1.8%				

2.5 Forecast Traffic Flows for Future Case Modelling

Three baseline scenarios will be modelled, as follows:

- 1. Application year 2018;
- 2. End of local plan 2037; and
- 3. Opening year with full occupation year to be determined.

We proposed to use the NTM AF15 dataset and TEMPro v7.2, updated with the latest household and job forecasts to be provided by Kent Council and Folkstone & Hythe District Council, to growth the 2016 and 2017 traffic surveys to 2018 for the application year scenario.

The baseline flows for the 2037 scenario will be based on a combination of growth factors from TEMPro. We will then apply TEMPro factor to growth the flows to the opening year.

3 Origin-Destination (OD) surveys

An Automatic Number Plate Recognition (ANPR) survey has been undertaken for a 12-hour period, between 07:00 and 19:00 on the same day as the classified turning counts in June 2017. During this period, vehicle registration plates have been recorded by vehicle type: light vehicles, heavy vehicles and public service vehicles (PSV) in 62 cameras located along the study area. ANPR provides information of the routes used by vehicles and number of vehicles using these routes within the study area.

The location of the cameras can be found in Appendix A.

Journey times will be extracted from the OD surveys. During the OD surveys, the vehicle registration plates were recorded together with a "time-stamp". This allows extraction of journey times between the various camera locations. It is noted that only journey times within the 90th percentile have been taken into account, as it has been assumed that journey times outside this range mean that a vehicle has done intermediate stops within the network before arriving to the destination point.

Table 7 presents the capture rate of registered vehicles per ANPR site. The overall captured rate is above 85% for the AM and PM peak period, only two sites (43 and 46) registered a capture rate below 85%. The small number of sites with a match lower than 85% gives us a high degree of confidence in the surveys quality.

Table 7. Registered percentage of vehicles in the ANPR

		8:00-9:0	0			
ANPR site	мсс	ANPR	% registered	мсс	ANPR	% registered
01	1744	1690	97%	1856	1781	96%
02	347	326	94%	403	398	99%
03	1612	1564	97%	1518	1465	97%
04	2485	2367	95%	3430	3231	94%
05	690	682	99%	320	316	99%
06	457	446	98%	675	666	99%
07	135	128	95%	129	125	97%
08	197	190	96%	161	158	98%
09	1641	1542	94%	1935	1883	97%
10	1723	1645	95%	2018	1925	95%
11	116	114	98%	122	115	94%
12	120	120	100%	80	80	100%
13	97	97	100%	147	145	99%
14	107	106	99%	52	50	96%
15	79	78	99%	129	128	99%
16	130	127	98%	87	83	95%
17	61	59	97%	48	44	92%
18	73	72	99%	42	42	100%
19	94	91	97%	178	174	98%
20	180	175	97%	131	129	98%
21	375	372	99%	384	382	99%
22	349	338	97%	402	398	99%
23	156	154	99%	159	152	96%
24	172	169	98%	121	119	98%
25	267	263	99%	312	309	99%
26	277	274	99%	283	275	97%
27	64	55	86%	125	122	98%
28	156	153	98%	130	126	97%
29	335	325	97%	504	500	99%
30	389	382	98%	282	280	99%
31	107	99	93%	214	194	91%
32	224	211	94%	94	93	99%
33	339	335	99%	556	554	100%
34	410	406	99%	311	309	99%
35	285	272	95%	519	508	98%
36	386	385	100%	290	282	97%
37	669	635	95%	763	727	95%
38	729	711	98%	720	707	98%
39	221	220	100%	258	252	98%
40	264	259	98%	144	143	99%
41	179	174	97%	239	232	97%
42	267	262	98%	200	197	99%
43	379	302	80%	285	276	97%
45	1330	1184	89%	1870	1753	94%
40	26/3	22/5	85%	1/28	1357	/9%
47	216	213	99%	142	140	99%
48	208	206	99%	146	143	98%
49	21	25	93%	13	13	100%
50	1	1	100%	0	6	100%
51	30	30	100%	2ŏ	28	000/
52	101	504	99%	001	C01	90%
53 E4	505	501	99%	823	820	070/
54 55	921	909	99%	082	004	91%
55	225	223	99%	224	221	99%
20	357	348	9/%	<u> </u>	334	99%
5/	607	600	99%	070	6/9	99%
58	532	499	94%	678	670	99%

4 Conclusion

Traffic flow differences between sites have been observed and explained. The structure of the VISSIM and VISUM models will provide additional zones and network structures to mitigate these differences where required.

Some discrepancies between data of difference ages have been identified at some locations but most of the data is acceptable. A decision will be made during the validation of the VISUM model to readjust the 2016 surveys to reduce the gaps but at this point the analysis shows that it is not a source of concern and does not need immediate mitigation.

The ANPR data shows a good sample rate against manual turning count and also shows that the data can be used to capture the journey time.

Overall the data check has shown no significant issues with the data set and demonstrated that the data is fit for purpose. It is proposed to proceed with the traffic modelling with this data set.

APPENDIX A ANPR Camera locations

Otterpool Park Traffic Survey Data Analysis

Otterpool Park Traffic Survey Data Analysis

Google Earth

APPENDIX B Classified Turning Counts (Summary)

Time		HOURLY FLOWS										
(Starting hour)	PERIOD	CAR	ΤΑΧΙ	LGV	OGV 1	OGV 2	BUS	COACH	MCY	PCY	TOTAL	Only motorised
07:00		35,628	4	7,507	948	1,149	279	365	326	109	46,315	46,206
07:15		41,688	4	7,855	1,007	1,103	309	400	316	103	52,785	52,682
07:30		46,670	4	7,695	1,124	1,092	300	398	317	90	57,690	57,600
07:45		49,727	4	7,325	1,239	1,071	259	398	296	68	60,387	60,319
08:00	AM	50,382	8	6,728	1,298	1,061	247	419	285	71	60,499	60,428
08:15		47,750	16	6,376	1,341	1,091	220	405	274	61	57,534	57,473
08:30		43,788	19	6,134	1,349	1,196	243	404	236	69	53,438	53,369
08:45		38,681	23	5,933	1,285	1,174	228	388	242	74	48,028	47,954
09:00		34,639	22	5,803	1,333	1,196	234	385	222	111	43,945	43,834
09:15		23,296	13	3,647	873	601	165	306	146	94	29,141	29,047
09:30		22,581	10	3,520	884	541	172	289	153	85	28,235	28,150
09:45		22,617	10	3,412	948	551	178	264	142	81	28,203	28,122
10:00		22,591	8	3,412	903	546	162	211	177	57	28,067	28,010
10:15		22,690	8	3,433	884	550	165	205	173	71	28,179	28,108
10:30		23,129	9	3,437	881	548	156	200	164	79	28,603	28,524
10:45		23,322	7	3,457	861	514	164	209	153	84	28,771	28,687
11:00		23,492	5	3,363	845	469	169	213	118	71	28,745	28,674
11:15		23,934	4	3,398	799	442	168	222	143	61	29,171	29,110
11:30		24,055	5	3,458	826	460	172	216	164	48	29,404	29,356
11:45		24,223	5	3,475	780	480	164	203	161	38	29,529	29,491
12:00		24,459	10	3,470	772	492	174	212	170	28	29,787	29,759
12:15		24,618	10	3,399	766	516	168	217	157	41	29,892	29,851
12:30	Off Peak*	24,496	12	3,335	719	499	155	237	158	64	29,675	29,611
12:45		24,537	16	3,384	748	484	160	240	188	93	29,850	29,757
13:00		24,432	17	3,449	773	501	163	225	202	99	29,861	29,762
13:15		24,464	22	3,601	826	511	167	259	194	94	30,138	30,044
13:30		25,300	25	3,657	819	516	171	276	176	95	31,035	30,940
13:45		25,981	19	3,637	760	518	181	308	147	85	31,636	31,551
14:00		26,721	16	3,713	702	535	173	330	131	92	32,413	32,321
14:15		27,406	13	3,748	631	513	176	304	179	92	33,062	32,970
14:30		27,939	11	3,816	632	518	184	327	182	76	33,685	33,609
14:45		28,381	16	3,991	658	513	169	312	207	70	34,317	34,247
15:00	-	28,692	17	4,046	655	502	176	316	216	58	34,678	34,620
15:15		30,528	17	4,522	612	493	210	320	220	62	36,984	36,922
15:30		31,059	14	4,798	578	505	189	280	276	58	37,757	37,699
15:45		32,070	13	4,895	510	487	187	280	319	57	38,818	38,761
16:00		45,692	9	7,390	842	972	229	383	460	80	56,057	55,977
16:15]	48,534	7	7,215	781	958	224	361	483	92	58,655	58,563
16:30	PM	51,190	5	6,912	654	889	216	330	482	102	60,780	60,678
16:45]	53,046	1	6,442	546	888	227	295	495	109	62,049	61,940
17:00		54,260	2	5,861	497	862	232	278	529	125	62,646	62,521

Time			HOURLY FLOWS											
(Starting PERIOD hour)	CAR	ΤΑΧΙ	LGV	OGV 1	OGV 2	BUS	COACH	MCY	PCY	TOTAL	Only motorised			
17:15		51,968	2	5,131	464	827	220	282	507	134	59,535	59,401		
17:30		48,408	2	4,467	457	858	222	280	437	139	55,270	55,131		
17:45		43,992	1	3,825	420	829	205	270	405	142	50,089	49,947		
18:00		39,956	-	3,298	377	796	171	233	391	134	45,356	45,222		

* Surveys conducted in 2016 did not include Off Peak hours.

APPENDIX E 2018 Baseline Flow Diagrams

APPENDIX E – 2018 Baseline flow diagrams

E.1 Folkestone & Hythe and Ashford - 2018 AM Peak

6,4 - 0, 0100000000000

Beachlorough Rd

296
•
95
234
61

E.2 Folkestone & Hythe and Ashford - 2018 PM Peak

E.3 Canterbury - 2018 AM Peak

E.4 Canterbury - 2018 PM Peak

